UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the November 2005 question paper

4024 MATHEMATICS

4024/02 Paper 2 maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 1	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

1	Nonsense in one part may be used to carn M marks in any other part of the of Throughout accept equivalent complete methods and decimal angles without sign, but degree sign essential if answer in degrees and minutes			
(a)	ABO - 90° with reason	Bi	1	
(b) (i	() sin OAB = 5/13 (= 0.4615) or OAB = 37.48, on seen (lends to OAB = 27.5.) AG	ВІ	1	
)	ii) <u>15</u>	Mi		
	tan 27.5			
	28.8 to 28.9 (cm)	All	2	
C	iii) 2(their AC)sin27.5 or 2X15cos273	MZ		
	or EPC =2[90 -27.5] (=125)			
	and $\sqrt{(15^2 - 15^2 - 2y 15 \times 15 \cos(\text{their } 125))}$ (M2)			
	26.55 to 26.65 (cm)	At	3	77
2 (a)	(t =) 2 % , 2.33 or better	B2	2	
	After B0, allow B1 for t = 7/3 or 2.3 or 3 or for 3t = 7 seen			1
(b)	x = -2.5 oc - 21/2 and y = 17	B2	2	
	After B0, allow B1 for one value found with no errors	1	11	
	or allow M1 for correct method to eliminate one variable	11	Ш	
	(reaching such as $4y = k$, $ky = 68$, $8x = k$ or $kx = -20$)			9
(c)	(y+2)(y-2) soi	Bi	Ш	
	(3y+2)(y+2) soi	Bi	Ш	
	3y + 2 obtained with no errors seen	181	3	
	y -2			
(d)	Collect terms e.g. $2x + gx = 2f - 3h$	MI		
	Factorise e.g. $x(2+g) = 2f - 3h$	681		
	2f - 3h	A1	3	-10
	2+8			

Page 2	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

	(i) (DCA =) 90" (angle in semi		Br	1	
	(ii) (DAC=) 34° or 124 - their		В1,		
	(iii) (CBA =) 124"	(opposite angles of cyclic quad)	B)	1. 1	- 1
	(iv) (AEH [=ADH]=) 28°	(angles in same segment)	Bi	4	
	Lack of reason loses B1 on fir	st occasion only			
(b)	EBD - 28"	(alternate angles) Reason needed	Bi		-10
	Deduces BDX or BDA = EBI				
	And hence triangle BDX is use	isceles inde		2	
(c)	(ABE=) 62*		·BI	3.	
(d)	Convincingly shows X is the c	entre of the circle	В	1	*
	e.g. Deduces triangle ABX	is isosceles, so AX = BX = DX			
4 (a)	Correct, labelled, diagram repo		B2	2	
	or labelled o	lingram with nt feast 4 values correct.			
(h) (i) (Median =) 2√		BI		
- 0	ii) (Mode=) 1 √		BV	1	
()	(iii) (Mean =) 1.92 or 48/25	ac	BI	3	
(E)	_k , 0.2 or 20% √ 5k		BI	1.	
(d)	k . 0.04 or 4%		B2	2	
	25k After B0, allow B1 for k, 0	02 or 2% or _24 , 0.0384 or 1.84%		1 1	
	50k	625			
(e)	Uses 276 cars or total mimbe	rofcars (48)	MI		
	A . 0.25 or 25%	- A-00/00	AI	2	10
	4k			1 1	

GCE O Level – November 2005	4024		2
5 (a) (i) Lists 5 different ways	Bi		
e.g. on 4017 (1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2)	1 2		11
[cm 4024, (10, 10, 10, 10), (20, 10, 10), (10, 20, 10), (10, 10, 20), (20, 20)]			
(ii) Lists 8 different ways			1
or justifies it is 5 ways with 10 cents first + 3 ways with 20 cents first	Bi	2	11
(b) (i) a = 13	Bi		11
b = 21 or 8 + (heir (i) \(\)	B2/	3	11
2 - 2 of a min of J	1		
(ii) z = x + y oc	BI	1	. 8
5 (a) <u>24</u>	ВІ	(
x			
(b) <u>24</u> ne	BI	1	1
x + 0.5			1
(c) 24 24 = ± 2 \(\int \) soi oe, but must contain x in 2 terms	MI	1	
x x+0.5	1		
Correct method to remove fractions,			
e.g. $24(x+0.5) - 24x = \pm 2x(x+0.5) \int$ oe	MI		
(but must have contained x in 2 different denominators)	'		
Obtain $2x^{2} + x - 12 = 0$ AG	Al	3	
 (d) Formula For numerical p ± √q , (not ± p) seen or used, 		1 1	
У.		1 1	
Allow B1 for $p = -1$ and $\tau = 4$	181	1 1	-1
and B1 for $q = 97$ or $\sqrt{q} = 9.84$ soi	BI	1 1	- 1
Complete square Allow B1 for $(x + \frac{1}{4})^2$ or $(x + \frac{1}{4})$ or soi		1 1	
and B1 for 97/16 or square roots such as 2.46 or 9.84		1 1	- 1
4			
Final answers Allow B1 for each of 2.212 and -2.712 nww	82	4	
or allow B1 for both 2.21 and - 2.71 seen			
or allow B1 for both 2.2122, and -2.7122 seen			
(e) Turne = 24 (-10.8)	MI	1 1	
their 2.212			
10 minutes 50 to 52 seconds	Al	2	1)

Mark Scheme

Syllabus

Paper

Page 3

Page 4	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

			- 1
7 (a) (i) ½ x 0.6° (= 0.5655) seen	Mi		
1.520 to 1.550 (m²)	AT	-2	
(ii) 2 x 2.2(2.5 +3.6) (= 26.84) oc soi	MJ		
Their 26.84 - their (i) - 1.9×0.9 (= 23.604)			
Lending to 23 fr (m²) AG	AI	3	
(b) (i) Increased area = 23.6 X1.12 oe (=26.43 or 26.44)	MI		
Number of tiles - their 26.4 Indep	MI		
0.25			
= 422 to 424	Al	4	
(ii) Number of boxes = their 423 (lending to 22)	MI		
20			
Cost = \$330 cao	Al	2	
(iii) Division by 120 soi	мі		1
20 x 15 or 100 x 15 so)	MI		
120 120			
\$ 2.5	Al	3	12

Page 5	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

e e	Nonsense in one part may be used to earn M marks in any other part of the qu	estion		
	Throughout accept equivalent complete methods and decimal angles without			
	sign, but degree sign essential if answer is given in degrees and minutes	1		
(a) (ii)	292*	BI	6	
10000		-		
(ii)	72° + 60° ± 2 × 72 × 60 cos 75 oc soi	MI		- 10
	Correct formula simplification and a square root taken, seen or	1	1 1	- 1
	implied by subsequent values dep	Mi		
	80.85 to 80.95 (m)	A2	4	- 1
	After A0, allow A1 for 6547 or 11020 or 104.9 seen, (dep on first M1)			
(iii)	sin B = sin 75 soi	Mi		
	60 their (ii)			
	sin ABC = 60 sin 75 (= 0.7162.)	Mi		
	their (ii)	1		
	45.70 to 45.80°	Al	3	
(iv)	157.70 to 158 or (their (i) + their (iii) - 180)	ві	1	
(b)	(Height of kite =) 72 tan 24 (=32,05)	MI		
	$\tan \alpha = \frac{\text{their height}}{60}$ (= 0.534)	мп		
	28.05 to 28.15°			
		Al	3	13
	Some possible answers			

Page 6	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

9 (a)	√ (5° + 12°) oc seen [leading to 13 AG]	Bi	1	
(b) (i)	m x 5 x 13 soi (=65m = 204.2)	MI		
	$2 \pi 5^{\pm}$ soi $(-50\pi - 157.1)$ indep	MI		
	Their 65π + their 50π + k π 5^{1} where k = integer (provided all terms are arens)	MI		
	361.0 to 362.0 (cm²)	AI	4	
(ii)	% π 5° x (2 so) (-100π = 314.2)	MI		
	14n .5' soi (= 250 n /5 = 261.8) indep	MI		
	575.5 to 576.5 (cm ³)	Αí	3	
(c)	Figs. { $\pi 1.5^2 \text{A2}$ } (= fig($9\pi /2$) = fig (4.14)	МІ		
	Correct conversion, (using 1 000 000) indep	МІ		
	Fig their 14.14 indep their 576	MI		
	24 300 to 24 600	AI	4	12

Page 7	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

10				
(a) (i)	EF = x -2	1	1	
(iii)	BC = 100/x			
(iii) FG = [100/x] - 5 or their (ii) - 5 ✓			
	All three correct	B2	2	1
	After B0, allow B1 for any two correct √ answers			
(b)	y = (x - 2)(100 - 5) convincingly leading to $y = 110 - 5x - 200$ AG	Bi	1	
	x 3			
(z)	40(.6)	BI	i	
(d)	All 7 points plotted √ (P1 for at least 5 of these √)	P2		
	Smooth curve, not grossly thick, through all plotted points, of which at least 5 are correct	CI	3	
(e)	Drawing tangent at $x=8$ and estimating change in y , ignoring sign change in x	ML		
	- I.60 to - 2.00 [Ignore support from Calculus]	AL	2	
(f).(i) [4.65 to 4.80] to [8.45 to 8.55]		R2	2	
	After R0, allow R1 for either value			
(ii) 6.20 to 6.40		XL	1.	12

Page 8	Mark Scheme	Syllabus	Paper
Faye o	GCE O Level – November 2005	4024	2

Andrew Andrew Comments				
~ ~ ~ ~				
- ~ ~				
(DO =) I		.B1		1
(AB =) b - a		10.		
(DB -) a + b		Bí	¥	
Triangle OAB is equilateral, so length OA = OB = AB		B1	1	
6) (1)		b.i		
→ ~			5	
(6) (1X -) 30		н)		
Points lie on a straight line of		Bi	9 1	
→				
(XZ =) - 3a		B1		
$\overrightarrow{YZ} = 3b - 3a$ or $\overrightarrow{ZY} = 3a - 3b$ \rightarrow \rightarrow		81		
Deduces XZ = YX = YZ,			ш	- 1
So sides are equal and hence triangle equilateral	dep	B1	2	
Alternative: States XZ parallel OA and YX parallel OB so X 60*		(Bi)		
And length XZ = length YX so equilateral	dep	(B1)		
1		MI		
9				
After 0/2, allow B1 for 1 to 9, 1:9, 9, $\left(\frac{1}{3}\right)^2$ or $\left(\frac{a}{3a}\right)^2$ seen		B2	2	¥.
	(AB =) b - a (DB -) a + b Triangle OAB is equilateral, so length OA = OB = AB (a) (AX =) b (b) (YX -) 3 b Points lie on a straight line oc (XZ -) - 3a (XZ -) - 3a Deduces XZ = YX = YZ , So sides are equal and hence triangle equilateral Alternative: States XZ parallel OA and YX parallel OB so X 60° And length XZ = length YX so equilateral	Only expressions linear in a and/or b can score. (DO = 1 m (AB = 1) b - a (DB - 2) a + b Triangle OAB is equilateral, so length OA = OB = AB (a) (AX = 1) b (b) (YX - 3 b) Points lie on a straight line oc (XZ = 1 b - 3 m or ZY = 3 m - 3 b) Deduces XZ = YX = YZ . So sides are equal and hence triangle equilateral dep Alternative: States XZ parallel OA and YX parallel OB so X 60° And length XZ = length YX so equilateral dep	Only expressions linear in a and/or b can score. (DO =) a	Only expressions linear in a and/or b can score. $(DO =) \text{ if } (DB =) \text{ a = b}$ $(DB =) \text{ a = b}$