MARK SCHEME for the October/November 2008 question paper

4024 MATHEMATICS
 4024/02
 Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2008	$\mathbf{4 0 2 4}$	$\mathbf{0 2}$

Question Number	Mark scheme details	Sub (part) mark	Comments
1	(a) (i) 16 cao (ii) (a) Figs $\frac{4}{91.8} \times(100)$ oe soi $=4.357 . ., 4.36(\%)$ After M0, 104.36 seen SC1 (b) Figs $\frac{19200}{21} \times 4(=36.57)$ oe Ans. (\$) 37 cao (iii) Figs $\frac{100}{90} \times 91.8$ 102 (cents) (b) (i) 13500 (ii) 4500 After B0, $240^{\circ}, 36000$ or $2 / 3+1 / 4$ soi B1	B1 $[1]$ M1 A1 $[2]$ M1 A1 $[2]$ M1 A1 $[2]$ B1 $[1]$ B2 $[2]$ $[10]$	E.g. 104.357 seen followed by ans 4%. Beware 4% from $(4 \div 95.8) \times 100=4.175$ Here and elsewhere, accept ans rounding to the given 3 sig. fig. ans. unless a particular range is specified. E.g. 914.28(95.8-91.8) Beware $1.04 \times$ total cost for 2006. Accept $\$ 1.02$
2	(a) \qquad (ii) $1 / 2 \times 10 \times 5 \times \tan 65$ oe 53.3 to 53.7 (iii) $4 \times$ their (a) (ii) +100 313.2 to 314.5 or $4 \times$ their (a) (ii) $+100 \mathrm{ft}\left(\mathrm{m}^{2}\right)$ After M0, 100 seen \quad SC1 (b) (i) $140\left({ }^{\circ}\right)$ After B0, 90 or $220\left(^{\circ}\right.$) soi (ii) 40 or 180 - their (b) (i) $\left({ }^{\circ}\right) \mathrm{ft}$ Use of Grads (a) (i) 9.57 (ii) 40.8 Rads: both ans. negative, therefore A0.	B1 ft [1]	$\begin{aligned} & \text { e.g. } \frac{\sin 65}{A B}=\frac{\sin 50}{10} \\ & \text { e.g. } 1 / 2 \times \text { their }(\mathbf{a})(\mathbf{i}) \times 10 \times \sin 65 \text { or } \\ & 1 / 2 \times \text { their }(\mathbf{a})(\mathbf{i})^{2} \times \sin 50 \end{aligned}$ Accept 10^{2} Dep. on 180 - their (b) (i) + ve.

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2008	4024	02

3	(a) $(p=)-5$ After B0 $2(2 p+1)=k+3(p-3)$ soi M1 $4 p+2=6+3 p-9$ cao soi p correctly evaluated ft (b) Final ans. $\frac{2}{v+1}$ After B0, $2(v-3)$ seen $(v-3)(v+1)$ seen (c) (i) Equation $(10 y+x)-(10 x+y)= \pm 63$ seen +63 leading to $y-x=7$ nww AG (ii)(a) $(10 x+y)+(10 y+x)=99$ seen leading to $x+y=9$ nww AG (ii)(b) $\begin{aligned} x & =1 \\ y & =8\end{aligned}$ $y=8$ After B0,		Clear intention to deal correctly with the two fractions. Correct solution of their linear equation clear of brackets and fractions Not necessarily in the numerator Not necessarily in the denominator Reaches such as $k y=16$ or $h x=2$.
4	(a) Histogram with Columns to 345640.5 vertically and widths 5555520 at correct "heights". After H 0 , at least 4 correct columns H2 at least 1 correct column H1 After 0, "correct" Histogram SC2 At least 4 "correct" cols. SC1 (b) 5 (c) $\frac{1}{8}$ cao (d) $\frac{870}{14280}$ or $\frac{29 k}{476 k}$ or 0.061 After D0 $\frac{870}{14400}$ or $\frac{29 k}{480 k}$ or 0.0604 . D1 or $\frac{30 \times 29}{120 \times 119}$ seen isw	H3 [3] B1 [1] C1 [1] D2	Axes: ignore labels, but the vertical scale must give heights of $3,4, \ldots \ldots$ No penalty for Histogram not our size. E.g. no vertical or horizontal scale, or the numbers are frequencies. Accept 4 i.e. even if $\times 2$.

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2008	4024	02

5	(a) (i) Angle between tangent and radius (ii) $(R \hat{O} Q=) 140\left({ }^{\circ}\right)$ (b) (i) $(A \hat{E} D=) 40\left({ }^{\circ}\right)$ (ii) $(R \hat{O} S=) 60\left({ }^{\circ}\right)$ After B0, $D \hat{A} E=80\left({ }^{\circ}\right)$ (iii) $(B E=) 11(\mathrm{~cm})$ or 10.84 after sine rule. After B0, $\frac{B E+4}{17+3}=\frac{3}{4}$ oe M1	B1 $[1]$ B1 $[1]$ B1 $[1]$ B2 $[2]$ B2 $[2]$ $[7]$	Must mention both tangent and radius. e.g. $\frac{B E+4}{20}=\frac{\sin 40}{\sin 60}$
6	(a) (i) $(p=) 19$ (ii) $(q=) 29$ (b) (i) $(j=) 16$ (ii) $(k=) 25$ (iii) $\left(S_{n}=\right) n^{2}$ (c) (i) 3,4 (ii) $n-1$ cao (iii) $n^{2}+n-1$ oe or their (b) (iii) + (c) (ii) ft	B 1 $[1]$ B 1 $[1]$ B1 $[1]$ B1 $[1]$ B1 $[1]$ B1 $[1]$ B1 $[1]$ B1 $[1]$ $[8]$	Accept their (a) (i) - (b) (i) ft and their (a) (ii) - (b) (ii) ft

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2008	4024	02

(a) (i) $\frac{1080}{x}$ seen
(ii) $\frac{1080}{x+30}$ seen
(b) their $\frac{1080}{x}-$ their $\frac{1080}{x+30}= \pm$ their $\left(\frac{1}{2} \mathrm{hr}\right)$ $\frac{1080}{x}-\frac{1080}{x+30}=\frac{1}{2}$ further
leading to $x^{2}+30 x-64800=0$ nww AG
(c) $(x=) 240$ and -270

After B0, one correct root

Signs reversed with correct factors seen SC2
Signs reversed
or for numerical $\frac{p \pm \sqrt{q}}{r}$ seen or used
$p=-30$ and $r=2$
B1
$q=260100$ or $\sqrt{q}=510$
or $\left(x+\frac{30}{2}\right)\left({ }^{2}\right)$ seen
B1

65025 or (\pm)255 seen
B1
(d) (i) $41 / 2$ or $\frac{1080}{\text { their }(+\mathrm{ve}) x} \mathrm{ft}$ isw
(ii) $\frac{2 \times 1080}{84+4.5}$ or $\frac{2 \times 1080}{2 \times \text { their }(\mathbf{d})(\mathbf{i})-\frac{1}{2}}$
$254.1,254$ or $\frac{2 \times 1080}{2 \times \text { their }(\mathbf{d})(\mathbf{i})-\frac{1}{2}}(\mathrm{~km} / \mathrm{h})$

B1 [1]

B1 [1]

Ignore incorrect attempts to convert such as 4.5 hr to hr and min.

Their (a) (i) and (ii) must contain x. Their $1 / 2 \mathrm{hr}$ could be $30(\mathrm{~min})$.

Ignore "rejected" at this stage.
Accept ans. rounding to $240,-270$, but nww

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2008	4024	02

8 Here and elsewhere in Trigonometry questions, nonsense in one part may be used to earn M marks in any other part of the question. Throughout, accept equivalent complete methods and decimal angles without degree sign, but degree sign essential if answer given in degrees and minutes.
(a) (i) $15\left(\left(^{\circ}\right)\right.$ cao
(ii) $\left(A C^{2}=\right) 15^{2}+10^{2} \pm 2 \cdot 15 \cdot 10 \cos 105$
$(A C=) \sqrt{15^{2}+10^{2}-2.15 .10 \cos 105}$
$(\sqrt{402.6})$
$(A C=) 20.06,20.1(\mathrm{~m})$
After A0, 402.6, 403
or 15.72 (from $\sqrt{247.35}$)
(Alternative complete methods get M2 A2)
(b) $\frac{\sin A \hat{D} B}{15}=\frac{\sin 105}{30}$ oe soi
$\sin A \hat{D} B=\frac{15 \sin 105}{30}(=0.4829)$
$(A \hat{D} B=) 28.87,28.9\left({ }^{\circ}\right)$
(c) (i) $B F^{2}+15^{2}=27^{2}$ soi
$(E F=) 10.05$ to 10.20
(ii) $\sin \theta=\frac{15}{27}$ oe

Final Ans 33.748, $33.7\left({ }^{\circ}\right)$

Grads
(a) (ii) 18.7
348.5 or 17.4 (A1)
(b) 33.2 (from 0.4984)
(c) (ii) 37.5

Rads (a) (ii) 19.9 397.3 or 15.9
(b) negative (A0)
(c) (ii) 0.589

NB. This M1 requires an attempt to evaluate the expression using the correct processes, followed by the intention to take the $\sqrt{ }$.
$+2.15 .10 \cos 105$ has been used.
e.g. $\sqrt{(10 \sin 75)^{2}+(15+10 \sin 15)^{2}}$
e.g. by $\sqrt{27^{2}-15^{2}-20^{2}}$

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2008	4024	02

9	(a) (i) $\pi \mathrm{a}^{2}-\pi \mathrm{b}^{2}$ $2510 \mathrm{~cm}^{2}$ (ii) Figs their2513.27 $\times 200(=502654.82 .$. $0.503, \text { or } \frac{\text { their } 2513.27 \times 200}{10^{6}} \mathrm{ft}\left(\mathrm{~m}^{2}\right)$ (iii) Figs $\frac{\text { their(a)(ii) }}{150 \times 2}$ or Figs $\frac{\text { their(a)(i) }}{150 \times 100}$ $\begin{aligned} & 1.676 \text { or } \frac{\text { their }(\mathbf{a})(\mathbf{i i})}{150 \times 2} \times 10^{3} \\ & \text { or } \frac{\text { their }(\mathbf{a})(\mathbf{i})}{150 \times 100} \times 10 \mathrm{ft}(\mathrm{~mm}) \end{aligned}$ (b) (i) $2 \pi \frac{3.5}{2}$ oe seen $\frac{\theta}{360} 2 \pi 3$ oe seen $2 \pi \frac{3.5}{2}=\frac{\theta}{360} 2 \pi 3$ oe leading to $\theta=210$ AG (ii) $3 \cos 75 \mathrm{oe}$ Their $(3 \cos 75)+3(=3.776)$ Final ans. 4 (b) (ii) Grads 5 (from 4.148) Rads 6 (from 5.765)	M1	With $\mathrm{a}=30$ or $\mathrm{b}=10$
		A1 [2]	(Accept answers correcting to 2510)
		M1	
		A1ft [2]	
		M1	The volume version is shown in metres and the area version in cm . Figs allows the units to be inconsistent.
		$\begin{array}{ll}\text { A1ft } & \\ \\ & \text { [2] }\end{array}$	
		M1	e.g. (curved SA of cone $=$) $\pi \times \frac{3.5}{2} \times 3$
		M1	e.g. (area of sector $=) \theta /(360) \times \pi \times 3^{2}$ Accept with $\theta=210$.
		A1 [3]	Condone methods reaching the range 209.5 to 210.5
		M1	
		M1	This M is independent of the first.
		A1 [3]	
		[12]	

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2008	4024	02

10 Condone inaccuracies of up to 1 mm in plotting and drawing.
If plots are not visible, allow P marks if curve passes within 1 mm of correct plot.
Both P and dependent C marks can be recovered following a grossly wrong plot if the plot is ignored and the curve passes within 1 mm of the correct point.
Lined or plain paper used: no penalty, extend tolerances to 2 mm .
Penalties deducted from P and C marks only:
Wrong scale(s) $\quad-1$ once
Interchanged axes no penalty if labelled, -1
otherwise
Non-uniform scale -2 after marking as generously as possible.
(a) All points plotted

After P0, at least 4 correct plots
Smooth curve, dep on at least P1
(b) 2200 to 2400
(c) (i) Drawing tangent at $t=2.5$ and $\frac{\Delta y}{\Delta x}$ seen 1800 to 2800 (bacteria per hour)
(ii) Rate of change (of number of bacteria per hour)
(d) (i) Ruled straight line $(2,4500)$ to $(3,3500)$ extended to cut the curve.

After L0, freehand or shorter line L1
(ii) 3.025 to 3.075 (hrs) or ft from their graph
(e) (i) $(k=) 50 \mathrm{cao}$
(ii) $(a=) 4$

Their line must be straight, but not horizontal.

Table value
Accept $\frac{200}{\text { their } k}$
Not just "increase": need idea of rate. E.g. accept Speed bacteria produced, but not number of bacteria per hour.

Page 9	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2008	4024	02

