MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' ver	Syllabus	Paper			
			GCE O LEVEL – May/June 2	009		4024	02	
1 (-)				D1	1	1		
1	(a)		$\frac{4a^2+9}{2}$ final answer	ы				
			6 <i>a</i>					
	(b)		5b(b-2) final answer	B1	1	Condone missing final bracke		
						After $0 + 0$ give	ve sc1 for <u>both</u>	
						correct forms see	en.	
	(c)	(i)	(6, 2)	B1	1	Condone missing brackets		
						e		
		(ii)	$\sqrt{(\pm 4)^2 + (\pm 10)^2}$	M1				
			10.7 to 10.8	A1	2	Accept $2\sqrt{29}$		
			$p \neq (ar + cr) \sqrt{r}$					
	(d)		For numerical $\frac{p \pm (br + br -)\sqrt{q}}{r}$			Completing the	square	
			p = -11 and $r = 6$ (or 2 × 3)	B1		P_1 for -11 P_1 for $\sqrt{205}$		
			$q = 205 \text{ or } \sqrt{q} = 14.3 \text{ to } 14.32$	B1		$1 \text{ for } \frac{1}{6}, \text{ B1 for } \sqrt{\frac{36}{36}}$ de		
						dep. on correct	formula s.o.i or	
						used		
			0.55	B1		 If final B0 + B0	then	
			-4.22	B1	4	sc1 for 0.5 to 0.6	6 AND - 4.2 to	
						-4.22; or for any two answe		
					101	given to 2 d.p.		
2	(a)	(i)	Figs 378/the product of at least 2 of 20.	M1	[2]			
	, ,		24, 7 and 60					
			¢21.25	A 1	2	A (\$21.2	Ф 21 2	
			\$31.25	AI	2	Accept \$31.2 \rightarrow \$0 000 031 2 \rightarrow	\$31.3	
						million;	φ0.000 051 5	
		(ii)	$\frac{945-378}{270}$ ×100 or $\frac{945}{270}$ ×100	M1		Accept <u>78.125</u>	$\frac{-31.25}{5} \times 100$	
			378 378 150% cao	A1	2	31.2	25	
			15070 040					
		(iii)	2:5 or $m = 2, n = 5$	B2	2	sc1 for partial simplification		
						seen.		
						120.313, 54.135, 42.105, 1 14.35, 6.15 or for ² or 1		
						or 5.2 or 2m.5m	5, 01 1.2.0,	
						01 5.2 01 2m:5m		
	(b)	$\frac{480}{2} \times \left(\frac{2}{2} = 16\right)$		M1				
			0.6 (100 -)					
			16 cao	A1	2	sc1 for 9.6(eu	ros) or (\$)800	
					[8]	seen.		
				l	լսյ			

Page 3			Mark Scheme: Teachers' ver	Syllabus	Paper			
			GCE O LEVEL – May/June 2	L – May/June 2009			02	
3	(a)	(i)	$\tan x = \frac{11}{4}$ 70 to 70.02	M1 A1	2	For any <u>complete</u> methods allow appropriate M and A marks. sc1 for 19.9 to 20 GRADIAN ANSWERS (i) 77.80 sc1 for 22.2 or 12.2 (ii) (a) 9.39 (b) 8.50 (leading to 2.5) or 7.77 from Sine Rule (leading to 3.23)		
		(ii) (a) (b)	$\sin 28 = \frac{4}{PX} \text{ or } \frac{PX}{(\sin 90)} = \frac{4}{\sin 28}$ 8.5 to 8.525 $d = \frac{4}{\tan 28}, \text{ or } PX \cos 28, \text{ or } \frac{4\sin 62}{\sin 28}$	M1 A1 M1	2			
			or $\sqrt{PX^2 - 4^2}$ 7.5 to 7.6 11 - d (= 3.4 to 3.5)	A1 M1	3			
	(b)		$r^{3} = \frac{96}{\frac{4}{3}\pi}$ or 22.9 2.84 to 2.841	M1 A1	2			
4	(a)	(i) (a)	3 (lines of symmetry)	B1 B1	1			
		(ii) (a)	Use of $(9 - 2) \times 180$ etc.	M1	1	AG. Allow if but not if auoted	140° calculated,	
		(b)	6x + 3y = 1260 oe y = 420 - 2x oe isw	B1 B1	2	The second B mark implies the		
		(c)	Sensible attempt at solving for x or y x = 136	M1 A1	2	first.		
	(b)	(i)	$\angle FEB = 114^{\circ}$	B1	1			
		(ii)	$\angle BEA = 42^{\circ}$	B1	1			
		(iii)	$\angle AGD = 63^{\circ}$	B1	1 [10]			
5	(a)	(i) (a)	$\frac{1}{50}$, 0.02 cao	B1	1	Accept negative	8	
		(b)	$\frac{1}{2} \times (8+4) \times 200$ oe	M1				
		(c)	1200 m 5 m/s	Al B1	2 1			
		(ii)	$150u = \frac{1}{2} \times 13 \times 150 (= 975)$ oe	M1				
			$u = 6\frac{1}{2}$	A1	2	$\sqrt{4} + \frac{1}{2}$ (their 5)		

Page 4			Mark Scheme: Teachers' ver	Syllabus	Paper			
			GCE O LEVEL – May/June 2009			4024	02	
	()		105	D1	1			
	(D)	(1)	195 m	BI	1			
		(ii)	24.5 or (25.4 to 25.5) seen	B 1				
			Distance	N/1				
			Time	MI				
			7 64 to 7 65	Δ1	3	NB $\frac{190}{-76}$	Scores the M1	
					5	25 7.0 secres the Wi		
					[10]	only		
6	(9)		n = 11					
U	(4)		p = 11 q = 30					
			r = 60					
			s = 6 all four	B2	2	sc1 for 2 or 3 co	rrect	
	(b)		x = 2n + 1 oe	B1		In (b), accept a	ny unsimplified	
	(~)		y = n(n+1) oe	B1		form but -1 , on	ce, if not given	
			$z = 2n(n+1)$ oe $\sqrt{2} \times y$	B 1	3	explicitly		
	(c)		102	R1	1			
	(0)		102	D 1	[6]			
-		(*)	2	D 1	1			
7	(a)	(1)	$\frac{2}{5}$ oe fraction	BI	1	Not 40%; 0.4		
		(ii) (a)	h = 25 2(50 × 15 + 60 × 15) + 50 × 60	B1 M1	1			
		(0)	$2(30 \times 13 + 60 \times 13) + 30 \times 60$ 6300 cm ²	A1	2	sc1 for 3300 or t	for 9300 cm^2	
					-			
	(b)	(i)	$\frac{220}{360} \times 2\pi \times 9 \times 35$	M1				
			1208 to 1210	A1	2			
		(••)	220					
		(11)	$\frac{220}{360} \times \pi \times 9^2 (= 155.50 \dots)$	M1		(iii) 188 to 188 3	AD ANSWERS	
			$\frac{1}{2} \times 9^2 \times \sin 140 \ (= 26.03 \ \dots)$	M1		from $\frac{1}{2} \times 9^2 \times sir$	$140 (= 32.7 \dots);$	
			181 to 182	A2	4	$\frac{1}{2}$		
						from $81 \times \sin^{1/3}$	$70 \times \sin 20$ (=	
						22.3)		
						(iii) 4.9 from c	os70; 6.2 from	
						sin20	6 27	
						sc1 for 4.08 6	or for 2.7	
						-		
						If A0, then		
						sc1 for 155 to 25.0 to 26.1 corrected 25.0 to 26.1 corrected	156 seen or for	
						23.9 to 20.1 seet	1	
		(iii)	$d = 9 - 9\cos 70$	M1		}		
			= 5.92 to 5.93	A1	2	}sc1 for 3.07 to	3.08 seen	
					[12]			

Page 5		je 5	Mark Scheme: Teachers' version			Syllabus	Paper	
			GCE O LEVEL – May/June 2	009		4024	02	
8	(a)	(i)	PQ = (x+2) m			If AB used instead of x , -1 once		
		(ii)	$BC = \frac{168}{x}$					
		(iii)	$QR = \frac{168}{x} + 11 \sqrt{BC} + 11$ all 3 (condone 10 + 1 for 11)	B2	2	sc1 for 1 or 2 correct		
	(b)		Area = $(x + 2) \left(\frac{168}{x} + 11\right) - 168$ or $\sqrt{PQ} \times QR - 168$ as an expression in x	M1		or $(x + 2) + 10(x + 2) + 2$ $\frac{168}{x}$ oe		
			correct working to $22 + 11x + \frac{336}{x}$	A1	2	Answer given		
	(c)		$p = 158$ to 158 $\frac{1}{3}$	B1	1			
	(d)		Correct scales	S1		Condone reversed axes,		
			7 correct plots (ignore $x = 9$) within 1 mm	P1		Accept if curve goes thro correct points		
			Smooth curve	C1	3	Not grossly thick; no strain lines Ignore curve for $x < 3$ and $x > 3$		
	(e)		Clear attempt to draw tangent at $(4, 150)$ gradient = -6 to -12	T1 G1	2	Accept "integer" fractions		
	(f)	(i)	$143 \leq \text{answer} < 144$	B1	1			
		(ii)	7.4 to 7.6	B1	1 [12]			
9	(a)	(i)		M1				
			$\sin 38 \sin 114$	M1				
			$AD = 17 \times \frac{\sin 38}{\sin 114}$	dep.				
			sin 114 11.4 to 11.5	A1	3	GRADIAN ANSWERS (i) 9.7 to 9.8 (ii) 140.9 to 141		
		(ii)	$\begin{cases} 17^2 = 9^2 + 10^2 \pm (2) \times 9 \times 10 \cos x \\ \text{or } \cos x = \pm \left[(9^2 + 10^2 - 17^2)/(2) \times 9 \times 101 \right] \end{cases}$	M1				
			$\cos C = \frac{10^2 + 9^2 - 17^2}{2 \times 9 \times 10} = (-0.6)$	A1				
			126 to 127	A1	3			

Page 6			Mark Scheme: Teachers' ver	Syllabus	Paper			
			GCE O LEVEL – May/June 2	009	09 4024 02			
	(b)	(i) (a)	$\overrightarrow{OQ} = \mathbf{p} + \mathbf{q}$	B1	1	In (b) (i),	-1, once, for	
		(b)	$\overrightarrow{RS} = \mathbf{p} - \mathbf{q} \sqrt{(\mathbf{a})} - 2\mathbf{q}$	B1	1	unsimplified ans	swers	
		(c)	$\overrightarrow{OS} = 2\mathbf{p} + 2\mathbf{q} \sqrt{2} \times (\mathbf{a})$	B1	1			
		(d)	$\overrightarrow{OT} = \mathbf{4p}$	B1	1			
		(ii)	(O, P and T are) collinear oe OT = 4OP oe	B1 B1	2 [12]	Marks in (ii) are dep on a correct (i) (d)		
10	(a)		Correct scales and axes Correct bases (width + position) Heights (2), 10, 8, 7, 4, 2	S1 B1 H1	3	Condone reversed axes is clearly labelled		
	(b)		7 < t ≤ 9	B1	1			
	(c)		$(4 \times 2) + (10 \times 3.5) + (8 \times 4.5) + (14 \times 6) + (8 \times 8) + (6 \times 10.5)$ (= 290)	M1		8, 35, 36, 84, 64, 63 Condone up to 3 slips		
			÷ 50 5.8	M1 A1	3	Indep of first M		
	(d)	(i)	0	B 1	1	Condone $\frac{0}{50}$, no	ne, nil	
		(ii)	$\frac{14}{25}$ oe 0.56	B1	1			
	(e)	(i)	$\frac{54}{175} (= \frac{14}{25} \times \frac{27}{49})$ (0.308 to 0.309)	B1	1	In (e), -1, once, for any answer not in lowest terms, or in decimal form		
		(ii)	$\frac{88}{175} \ (= 2 \times \frac{14}{25} \times \frac{22}{49}) (0.502 \text{ to } 0.503)$	B2	2 [12]	sc1 for $\frac{44}{175}$ (0.251 to 0.252)		
11	(a)	(i)	$\begin{pmatrix} -3 & 9 \\ -3 & 2x \end{pmatrix}$	B2	2	sc1 for 3 correct elements		
		(ii)	$\mathbf{AB} = \begin{pmatrix} 1 & 0 \\ -1 + \frac{x}{3} & 1 \end{pmatrix} \text{ or } \mathbf{BA} = \begin{pmatrix} 1 & 3 - x \\ 0 & 1 \end{pmatrix}$			$\begin{pmatrix} 0 & 1 \end{pmatrix}$		
			or $\mathbf{B}^{-1} = \begin{pmatrix} 0 & 3 \\ -1 & 3 \end{pmatrix}$ oe	B1		e.g. $3 \begin{bmatrix} 0 & 1 \\ -\frac{1}{3} & 1 \end{bmatrix}$, (0.33 or be		
			x = 3	B1 dep.	2			

Page 7		Mark Scheme: Teachers' version			Syllabus	Paper	
		GCE O LEVEL – May/June 2009			4024	02	
(b)	(i) (a)	SF = -2	B1	1		(1)	
	(b)	Centre is (1, 2)	B2	2	B1 for each coord. sc1 for		
						(2)	
						.	
	(ii)	Shear,	B 1		Mention of a 2^{n}	¹ transformation	
		x-axis inv., $SF = 2$	B1	2	loses both marks	5	
	(iii) (a)	$\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} k \end{pmatrix} \begin{pmatrix} k+4 \end{pmatrix}$					
		$\begin{bmatrix} 0 & 1 \\ 2 \end{bmatrix}^{=} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$					
		$\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \end{pmatrix}$	MA1	1			
	(h)	$\kappa = 4$ ET(I) = E((2, 2)) = (-12, 2)	B2	2	sc1 for $(-2, 5, 2)$		
	(0)	$E_1(L) = E((0, 2)) = (-13, 2)$	102	[12]	501 101 (2.3, 2)		
				[14]			