Cambridge International Examinations

Cambridge Ordinary Level

MATHEMATICS (SYLLABUS D)
4024/21
Paper 2
May/June 2016
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answers	Mark	Part Marks
1 (a) (b) (c) (d)	7.5(0) 45 35 25	2 2 3	M1 for $x+\frac{60 x}{100}=12$ soi or B1 for \div by 160 M1 for $\frac{17.40-12}{12} \times 100$ M1 for $\frac{17.4-11.31}{17.4} \times 100$ M1 for $60 \times 17.4+x \times 11.31(\geqslant 1320)$ or B1 276 A1 for 24.4(03...)
2 (a) (b) (c) (d) (i) (ii)	6 $\frac{3 b^{2}}{a}$ $\frac{q^{2}}{3}$ $(4 t-1)(t+9)$ $\frac{1}{4}-9$ or ft	2 2 2 2 1 ft	M1 for $p-1=5(7-p)$ soi M1 for $\frac{9 b^{4}}{a^{2}}$ oe $\frac{3 a^{\frac{1}{2}} b^{3}}{a^{\frac{3}{2}} b}$ oe or B1 for $3 \mathrm{~b}^{2}$ as numerator or $\frac{k}{a}$ B1 for $q^{2}(1-q)$ or $3(1-q)$ B1 for $(a t+c)(b t+d)$ with $a b=4$ or $c d=-9$
3 (a) (b) (i) (ii) (c) (d) (i) (ii)	Correct graph	2 1 2 2 2 2	B1 for correct scales and 4 points or wrong scales and all points. M1 for $x^{2}+x-3=2$ soi M1 for tangent at $x=1$ B1 for $2 x$ or -2 Dependent on line drawn B1 for their line having FT gradient or FT intercept

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2016	4024	21

Question	Answers	Mark	Part Marks
7 (a)	4.53 to 4.54	4	B 2 for $\mathrm{BOC}=52$ or after B 0 B1 for $A \hat{B} C=90$ or triangle $O B C$ isosceles or $B \hat{A} C=26$ M1 for $\frac{52}{360} \times 2 \pi 5 \mathrm{ft}$
(b) (i) (ii) (iii)	101 or 32π or 100 to 100.6 $0.87 \text { to } 0.871$ 7		M1 for $\pi(16.52)$ or 15.5^{2} B1 for $\pi 15.5^{2}$ or $44 \pi r^{2}$ and M1 for $r^{2}=\frac{\pi 15.5^{2}-650}{44 \pi}$ M1 for $\pi 15.5^{2} d=500$ A1 for 0.66 to 0.663
8 (a) (i) (ii) (b) (i) (ii) (iii) (a) (b)	-1.92 (3...... $\frac{8}{p+5}$ H and h correctly derived $\frac{75}{(x-1)(2 x+3)}$ correctly derived Equation correctly derived. 4.90	1 2 2 3 2 2	M1 for $\frac{8}{q}=p+5$ or $p q=8-5 q$ or $p=\frac{8}{q}-5$ M1 for correct substitution in the formula for the area of a trapezium. M1 for $\frac{15(2 x+3)-30(x-1)}{(x-1)(2 x+3)}$ soi B1 for $30 x+45-30 x+30$ soi B1 for $\frac{75}{(x-1)(2 x+3)}=1.5$ B1 for $\sqrt{1^{2}-4 \times 2 \times(-53)}$ soi or B1 for $\frac{-1 \pm \sqrt{\text { their } 425}}{2 \times 2}$ soi

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2016	4024	21

Question	Answers	Mark	Part Marks
(a) (i) (ii) (iii) (b) (i) (ii)	5.38 to 5.39 or $\sqrt{ } 29$ 0.517 to 0.518 68.8 to 68.9 80.9(4.... Or 81		M1 for $\left(A C^{2}\right)=2^{2}+5^{2}$ M1 for $\frac{C E}{2}=\sin 15$ oe M1 for $\frac{A F}{2}=\cos 15$ oe or $\mathrm{BC}^{2}=\mathrm{BE}^{2}+(\text { their } \mathrm{CE})^{2}$ or any complete alternative method A1 for 1.932 and M1 for $\tan \hat{A A} E=\frac{5}{2 \cos 15}$ oe or $\frac{5}{\text { their }(A F)}$ B1 for $10^{2}=6^{2}+9^{2}-2 \times 6 \times 9 \times \cos \theta$ or B2 for $\cos \theta=\frac{9^{2}+6^{2}-10^{2}}{2 \times 9 \times 6}$
10 (a) (b) (c) (i) (ii) (d) (e) (f)	(2) (4) 14548498 (100) Correct curve $195 \mathrm{ft} 190 \leqslant$ and <200 50-75 Correct curve 92 ft B 15 ft A	1 2 1 2 4 1 1ft	P1 for at least 5 correct plots B1 for one quartile correct in ranges 225 to 235 or 160 to 175 P3 for at least 4 correct plots or $\mathrm{B} 1+\mathrm{B} 1$ for any two correct points soi. Their 90-75

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2016	4024	21

Question	Answers	Mark	Part Marks
11 (a)	$\binom{-6}{2}$	1	
(b) (i)	$\binom{8}{4}$	2	$\mathrm{B} 1 \text { for }\binom{8}{k} \text { or }\binom{k}{4}$
(ii)	$\binom{-8}{-4} \mathrm{ft}$	1	
(iii)	$8.94 \text { or } 8.94 \text { to } 8.95$ $\text { or } \sqrt{ } 80 \text { oe }$	2	M1 for $\sqrt{(-8)^{2}+(-4)^{2}}$ oe ft
(c) (i)	$\begin{aligned} & \text { Triangle vertices }(5,4),(13,0), \\ & (9,8) \end{aligned}$	2	B1 for 2 correct
(ii)	Triangle $F(5,4),(7,3),(6,5)$	1	
(iii)	$\begin{aligned} & \text { Rotation } \\ & 180 \\ & \text { Centre }(5,4) \end{aligned}$	3	B2 for Rotation with either centre or angle. B1 for Rotation.

