

MATHEMATICS (SYLLABUS D)

4024/12 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2Mark SchemeSyllabusPaperCambridge O Level – October/November 2016402412

Qu	estion	Answers	Mark	Part marks
1	(a)	2.457	1	
	(b)	$\frac{2}{63}$ oe fraction; or 0.031 to 0.032	1 (*)	
2	(a)	123.456	1	
	(b)	(0).0643	1	
3	(a)		1	
	(b)		1	
4	(a)	2.05	1	
	(b)	$-\frac{3}{4}$ -0.7 74% 0.7	1	
5	(a)	41°	1	
	(b)	245°	1	
6		$\sqrt{3.98} \approx \sqrt{4}$ or 2, and $602.3 \approx 600$ (or 602), and $2.987 \approx 3$ all three seen (±)400 (or 401, 401.3 or better, from 602)	M1* A1	B1 for two correct approximations. Could be implied by 2×200 or 1 200/3.C1 for 400 WAW.
7		Triangle with vertices $(1, 1)$ $(1, 5)$ $(7, 5)$	2*	B1 for two correct vertices
8	(a)	5.13 × 10 ⁵	1	
	(b)	2.4×10^{-8}	2*	C1 for $A \times 10^{-8}$ with $1 \le A < 10$ or for 2.4×10^{-10} ; or B1 for 24×10^{-9} or for 0.000 000 024
9	(a)	20 25	1 1	
	(b)	Rectangle with base 35 to 50 and height 2	1	

Page 3	Mark Scheme Cambridge O Level – October/November 2016				Paper 12	
Question	Answers	Mark	Pai	art marks		
10 (a)	-3.5 or any equivalent	1				
(b)	$\frac{1}{3}$	2*	M1 for $5 = 4 + 3x$ or B1 for $(f^{-1}(x) =) \frac{x-4}{3}$ oe or B1 for $x = \frac{1}{3}$, followed by further work			
11 (a)	4 nfww	2*	B1 for " k " = 36 from or M1 for 9×2^2 = or M1 for (<i>their k</i>)	$= y \times 3^2$ oe		
(b)	$\frac{p}{4}$	1				
12 (a)	0	1				
(b)	0.8 oe	2*	M1 for $(15 \times 1 + 6 \times 1)$	$\times 2 + 3 \times 3 + 4$	×1)/50	
13	Correct triangle	3*	Following an attempt at a rotation of 110° about <i>O</i> , award C2 for two correct vertices or C1 for one correct vertex. If [0] scored then either B1 for arc(s) of correct radii, centre <i>O</i> , (from <i>A</i> , <i>B</i> or <i>C</i>); or B1 for <i>AOA</i> ' or <i>BOB</i> ' or <i>COC</i> ' = 110°			
14 (a)	A B C C C C C C C C C C C C C C C C C C	1				
(b)	8	2*	M1 for $23 + 17 - $ or M1 for $23 - x + $ or B1 for $S \cap F' = $	-x + 17 - x + 17 -		
15	A correct method to eliminate one variable	* M1				
	Either $x = 5$ or $y = -6$ WWW	A1				
	Both $x = 5$ and $y = -6$ WWW	A1	If [0] earned, then values that satisfy	either equati	on.	

If only **M1** earned, then award **B1** for a *correct* substitution of their first solution into one, or a *correct* linear combination

of both, of the *original* equations.

Pa	age 4	Mark Scheme			Syllabus	Paper
		Cambridge O Level – October/November 2016				12
Que	estion	Answers	Mark	Part marks		
16	(a)	13	1			
	(b)	$(\pm)\frac{9}{16}$	1			
	(c)	$4y^3$	1			
17	(a)	200	1			
	(b)	15 : 1	2*	C/B1 for any correct e.g. 210 : 14; 105 : 14/60 or M1 for 3.5×60×6 14 or B1 for 3½ hrs =	7; $\frac{30}{2}$: 1; $\frac{7}{2}$ 60 : 14×60; 3	$:\frac{14}{60}; 3.5:$ $3.5 \times 60:$
18	(a)	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1			
	(b)	0	1			
	(c)	$\frac{4}{12}$ oe ; or FT <i>their table</i>	1√			
19	(a)	1.65	1			
	(b)	15.15	2*	M1 for <i>their(a)</i> + 1 or B1 for 13.5 seen		00
20		3(2x-1) + 4(x-2);or 6x - 3 + 4x - 8; or 10x - 11	M1*			
		<i>their</i> (10x - 11) = 24 or $\frac{their(10x - 11)}{12} = 2$	M1*			
		3.5 oe WWW	A1			

Page 5	Mark Scheme	Syllabus Paper			
	Cambridge O Level – October/	er 2016 4024 12			
Question	Answers	Mark	Part marks		
21	600 WWW	3*	M2 for $\frac{\pi \times 20^2 \times 16}{\frac{4}{3} \times \pi \times 2^3}$ or B1 for (Volume of water =) $\pi \times 20^2 \times 16$ or for (Volume of one drop =) $\frac{4}{3} \times \pi \times 2^3$ soi		
22 (a)	Perpendicular bisector of <i>AB</i> .	1			
(b)	Bisector of angle ABC.	1			
(c)	Correct (bottom right) region shaded.	1 √	FT for two intersecting lines – slightly inaccurate but correct types of loci.		
23 (a)	14	2*	M1 for $25 - 1 \times 1 - 2 \times 2 - \frac{1}{2} \times 4 \times 3$ oe disection.		
(b)	18 nfww	2*	B1 for sloping side = 5		
24 (a)	68	1			
(b)	146	1			
(c)	34; or FT <i>their</i> (a)/2; or FT 180 – <i>their</i> (b)	1 √			
(d)	56	1			
25 (a)	$(0, 4\frac{1}{3})$	1			

	(b)	$x \ge 1$ oe, $y \ge 2$ oe, $3y + 2x \ge 13$ oe – all three	2	C1 for one or two correct, or for $x \dots 1$ oe, $y \dots 2$ oe, $3y + 2x \dots 13$ oe, with incorrect "".
	(c)	(6, 2)	1	
26	(a) (i)	2n - 1 oe	1	
	(ii)	421	1	
	(b) (i)	8	1	
	(ii)	14	1	

Page 6	age 6 Mark Scheme Cambridge O Level – October/November 2016				
Question	Answers	Mark	Part marks		
27 (a)	(-)0.9 oe	1			
(b)	420	2*	M1 for $\frac{1}{2} \times 20 \times (12 +$	30) oe	
(c)	25	2*	M1 for $(k - 20) \times 1$ or C1 for $k = 5$	2 = 60 oe	