For examination in 2010

# MATHEMATICS (SYLLABUS D) 4024/4029 GCE O Level 

## Available in June and November.

## CONTENTS

Page
MATHEMATICS (SYLLABUS D) 4024 ..... 1
MATHEMATICAL NOTATION ..... 9
BOOKLIST ..... 13

## Notes

## Electronic Calculators and Mathematical Tables

1. At all centres the use of electronic calculators or mathematical tables is prohibited in Ordinary Level and S.C. Mathematics Syllabus D Paper 1 (4024/1), (4029/1 for centres in Mauritius in November).
2. At all centres the use of silent electronic calculators is expected in S.C./O level Mathematics Syllabus D Paper 2 (4024/2) (4029/2 for Centres in Mauritius in November). If calculators are not available to candidates, the Cambridge Elementary Mathematical Tables (Second Edition) may be used in SC/O level Mathematics Syllabus D Paper 2 (Papers 4024/2, 4029/2). Copies of these tables may be obtained from the Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge and through booksellers. No mathematical tables other than these are permitted in the examination.
3. The General Regulations concerning the use of electronic calculators are contained in the Handbook for Centres.

## Mathematical Instruments

Apart from the usual mathematical instruments, candidates may use flexicurves in this examination.

## Mathematical Notation

Attention is drawn to the list of mathematical notation at the end of this booklet.

## Exclusions

Syllabus 4024 must not be offered in the same session with any of the following syllabuses:

## 0580 Mathematics

0581 Mathematics (with Coursework)
4021 Mathematics A (Mauritius)
4026 Mathematics E (Brunei)
4029 Mathematics (Syllabus D) (Mauritius)
Syllabus 4029 must not be offered in the same session with any of the following syllabuses:

## 0580 Mathematics

0581 Mathematics (with Coursework)
4021 Mathematics A (Mauritius)
4024 Mathematics (Syllabus D)

## MATHEMATICS SYLLABUS D (4024)

## GCE ORDINARY LEVEL AND SCHOOL CERTIFICATE

(Syllabus Code 4029 is to be used by Centres in Mauritius in November.)

## Introduction

The syllabus demands understanding of basic mathematical concepts and their applications, together with an ability to show this by clear expression and careful reasoning.

In the examination, importance will be attached to skills in algebraic manipulation and to numerical accuracy in calculations.

## Learning Aims

The course should enable students to:

1. increase intellectual curiosity, develop mathematical language as a means of communication and investigation and explore mathematical ways of reasoning;
2. acquire and apply skills and knowledge relating to number, measure and space in mathematical situations that they will meet in life;
3. acquire a foundation appropriate to a further study of Mathematics and skills and knowledge pertinent to other disciplines;
4. appreciate the pattern, structure and power of Mathematics and derive satisfaction, enjoyment and confidence from the understanding of concepts and the mastery of skills.

## Assessment Objectives

The examination will test the ability of candidates to:

1. recognise the appropriate mathematical procedures for a given situation;
2. perform calculations by suitable methods, with and without a calculating aid;
3. use the common systems of units;
4. estimate, approximate and use appropriate degrees of accuracy;
5. interpret, use and present information in written, graphical, diagrammatic and tabular forms;
6. use geometrical instruments;
7. recognise and apply spatial relationships in two and three dimensions;
8. recognise patterns and structures in a variety of situations and form and justify generalisations;
9. understand and use mathematical language and symbols and present mathematical arguments in a logical and clear fashion;
10. apply and interpret Mathematics in a variety of situations, including daily life;
11. formulate problems into mathematical terms, select, apply and communicate appropriate techniques of solution and interpret the solutions in terms of the problems.

## Units

SI units will be used in questions involving mass and measures: the use of the centimetre will continue.

Both the 12-hour clock and the 24 -hour clock may be used for quoting times of the day. In the 24 -hour clock, for example, 3.15 a.m. will be denoted by $0315 ; 3.15$ p.m. by 1515 , noon by 1200 and midnight by 2400 .

Candidates will be expected to be familiar with the solidus notation for the expression of compound units, e.g. $5 \mathrm{~cm} / \mathrm{s}$ for 5 centimetres per second, $13.6 \mathrm{~g} / \mathrm{cm}^{3}$ for 13.6 grams per cubic centimetre.

## Scheme of Papers

| Component | Time Allocation | Type | Maximum Mark | Weighting |
| :---: | :---: | :---: | :---: | :---: |
| Paper 1 | 2 hours | Short answer questions | 80 | $50 \%$ |
| Paper 2 | $21 / 2$ hours | Structured questions | 100 | $50 \%$ |

Paper 1 will consist of about 25 short answer questions. Neither mathematical tables nor slide rules nor calculators will be allowed in this paper. All working must be shown in the spaces provided on the question paper. Omission of essential working will result in loss of marks.

Paper 2 will consist of two sections: Section A ( 52 marks) will contain about six questions with no choice. Section B (48 marks) will contain five questions of which candidates will be required to answer four. Omission of essential working will result in loss of marks.

Candidates are expected to cover the whole syllabus. Each paper may contain questions on any part of the syllabus and questions will not necessarily be restricted to a single topic.

## Calculating Aids

PAPER 1
The use of all calculating aids is prohibited.
PAPER 2
(a) It is assumed that all candidates will have an electronic calculator. A scientific calculator with trigonometric functions is strongly recommended. However, the Cambridge Elementary Mathematical Tables may continue to be used to supplement the use of the calculator, for example for trigonometric functions and square roots.
(b) The use of slide rules will no longer be permitted.
(c) Unless stated otherwise within an individual question, three figure accuracy will be required. This means that four figure accuracy should be shown throughout the working, including cases where answers are used in subsequent parts of the question. Premature approximation will be penalised, where appropriate.
(d) In Paper 4024/2, candidates with suitable calculators are encouraged to use the value of $\pi$ from their calculators. The value of $\pi$ will be given as 3.142 to 3 decimal places for use by other candidates. This value will be given on the front page of the question paper only.

Detailed Syllabus

## THEME OR TOPIC

## SUBJECT CONTENT

Candidates should be able to:

1. Number
2. Set language and notation
3. Function notation
4. Squares, square roots, cubes and cube roots
5. Directed numbers
-use natural numbers, integers (positive, negative and zero), prime numbers, common factors and common multiples, rational and irrational numbers, real numbers; continue given number sequences, recognise patterns within and across different sequences and generalise to simple algebraic statements (including expressions for the $n$th term) relating to such sequences.
-use set language and set notation, and Venn diagrams, to describe sets and represent relationships between sets as follows:

Definition of sets, e.g.
$A=\{x: x$ is a natural number $\}$
$B=\{(x, y): y=m x+c\}$
$C=\{x: a \leqslant x \leqslant b\}$
$D=\{a, b, c \ldots\}$
Notation:

| Union of $A$ and $B$ | $A \cup B$ |
| :--- | :--- |
| Intersection of $A$ and $B$ | $A \cap B$ |
| Number of elements in set $A$ | $\mathrm{n}(A)$ |
| ". . is an element of $\ldots$ ". | $\in$ |
| ". . is not an element of $\ldots$ | $\notin$ |
| Complement of set $A$ | $A^{\prime}$ |
| The empty set | $\varnothing$ |
| Universal set | $\mathscr{E}$ |
| $A$ is a subset of $B$ | $A \subseteq B$ |
| $A$ is a proper subset of $B$ | $A \subset B$ |
| $A$ is not a subset of $B$ | $A \nsubseteq B$ |
| $A$ is not a proper subset of $B$ | $A \not \subset B$ |

-use function notation,
e.g. $f(x)=3 x-5$, f: $x \mapsto 3 x-5$
to describe simple functions, and the notation

$$
\mathrm{f}^{-1}(x)=\frac{x+5}{3} \text { and } \mathrm{f}^{-1}: x \mapsto \frac{x+5}{3}
$$

to describe their inverses.
-calculate squares, square roots, cubes and cube roots of numbers.
-use directed numbers in practical situations (e.g. temperature change, tide levels).
6. Vulgar and decimal fractions and
percentages
7. Ordering
8. Standard form
9. The four operations
10. Estimation
11. Limits of accuracy
12. Ratio, proportion, rate
13. Percentages tables
15. Measures
16. Time
17. Money
-use the language and notation of simple vulgar and decimal fractions and percentages in appropriate contexts; recognise equivalence and convert between these forms
-order quantities by magnitude and demonstrate familiarity with the symbols
$=, \neq,>,<, \geqslant, \leqslant$.
-use the standard form $A \times 10^{n}$ where $n$ is a positive or negative integer, and $1 \leqslant A<10$.
-use the four operations for calculations with whole numbers, decimal fractions and vulgar (and mixed) fractions, including correct ordering of operations and use of brackets.
-make estimates of numbers, quantities and lengths, give approximations to specified numbers of significant figures and decimal places and round off answers to reasonable accuracy in the context of a given problem.
-give appropriate upper and lower bounds for data given to a specified accuracy (e.g. measured lengths);
-obtain appropriate upper and lower bounds to solutions of simple problems (e.g. the calculation of the perimeter or the area of a rectangle) given data to a specified accuracy.
-demonstrate an understanding of the elementary ideas and notation of ratio, direct and inverse proportion and common measures of rate; divide a quantity in a given ratio; use scales in practical situations, calculate average speed;
-express direct and inverse variation in algebraic terms and use this form of expression to find unknown quantities.
-calculate a given percentage of a quantity; express one quantity as a percentage of another, calculate percentage increase or decrease; carry out calculations involving reverse percentages, e.g. finding the cost price given the selling price and the percentage profit.
-use an electronic calculator or logarithm tables efficiently; apply appropriate checks of accuracy.
-use current units of mass, length, area, volume and capacity in practical situations and express quantities in terms of larger or smaller units.
-calculate times in terms of the 12-hour and 24-hour clock; read clocks, dials and timetables.
-solve problems involving money and convert from one currency to another.

| 18. Personal and household finance | -use given data to solve problems on personal and <br> household finance involving earnings, simple <br> interest, discount, profit and loss; extract data from |
| :--- | :--- |
| tables and charts. |  |
| 19. Graphs in practical situations | -demonstrate familiarity with cartesian coordinates |
| in two dimensions; interpret and use graphs in |  |
| practical situations including travel graphs and |  |
| conversion graphs; draw graphs from given data; |  |
|  | -apply the idea of rate of change to easy |
| kinematics involving distance-time and speed-time |  |
| graphs, acceleration and retardation; calculate |  |
| distance travelled as area under a linear speed-time |  |

26. Graphical representation of inequalities
27. Geometrical terms and relationships
28. Geometrical constructions
29. Bearings
30. Symmetry
31. Angle
-represent linear inequalities in one or two variables graphically. (Linear Programming problems are not included.)
-use and interpret the geometrical terms: point, line, plane, parallel, perpendicular, right angle, acute, obtuse and reflex angles, interior and exterior angles, regular and irregular polygons, pentagons, hexagons, octagons, decagons;
-use and interpret vocabulary of triangles, circles, special quadrilaterals;
-solve problems and give simple explanations involving similarity and congruence;
-use and interpret vocabulary of simple solid figures: cube, cuboid, prism, cylinder, pyramid, cone, sphere;
-use the relationships between areas of similar triangles, with corresponding results for similar figures, and extension to volumes of similar solids.
-measure lines and angles; construct simple geometrical figures from given data, angle bisectors and perpendicular bisectors using protractors or set squares as necessary; read and make scale drawings. (Where it is necessary to construct a triangle given the three sides, ruler and compasses only must be used.)
-interpret and use three-figure bearings measured clockwise from the north (i.e. $000^{\circ}-360^{\circ}$ ).
-recognise line and rotational symmetry (including order of rotational symmetry) in two dimensions, and properties of triangles, quadrilaterals and circles directly related to their symmetries;
-recognise symmetry properties of the prism (including cylinder) and the pyramid (including cone); -use the following symmetry properties of circles:
(a) equal chords are equidistant from the centre;
(b) the perpendicular bisector of a chord passes through the centre;
(c) tangents from an external point are equal in length.
-calculate unknown angles and give simple explanations using the following geometrical properties:
(a) angles on a straight line;
(b) angles at a point;
(c) vertically opposite angles;
(d) angles formed by parallel lines;
(e) angle properties of triangles and quadrilaterals;
(f) angle properties of polygons including angle sum;
(g) angle in a semi-circle;
(h) angle between tangent and radius of a circle;
(i) angle at the centre of a circle is twice the angle at the circumference;
(j) angles in the same segment are equal;
(k) angles in opposite segments are supplementary.
32. Locus
33. Mensuration
34. Trigonometry
-use the following loci and the method of intersecting loci:
(a) sets of points in two or three dimensions
(i) which are at a given distance from a given point,
(ii) which are at a given distance from a given straight line,
(iii) which are equidistant from two given points;
(b) sets of points in two dimensions which are equidistant from two given intersecting straight lines.
-solve problems involving
(i) the perimeter and area of a rectangle and triangle,
(ii) the circumference and area of a circle,
(iii) the area of a parallelogram and a trapezium,
(iv) the surface area and volume of a cuboid, cylinder, prism, sphere, pyramid and cone (formulae will be given for the sphere, pyramid and cone),
(v) arc length and sector area as fractions of the circumference and area of a circle.
-apply Pythagoras Theorem and the sine, cosine and tangent ratios for acute angles to the calculation of a side or of an angle of a right-angled triangle (angles will be quoted in, and answers required in, degrees and decimals of a degree to one decimal place);
-solve trigonometrical problems in two dimensions including those involving angles of elevation and depression and bearings;
-extend sine and cosine functions to angles between $90^{\circ}$ and $180^{\circ}$; solve problems using the sine and cosine rules for any triangle and the formula
$\frac{1}{2} a b \sin C$ for the area of a triangle;
-solve simple trigonometrical problems in three dimensions. (Calculations of the angle between two planes or of the angle between a straight line and plane will not be required.)
-collect, classify and tabulate statistical data; read, interpret and draw simple inferences from tables and statistical diagrams;
-construct and use bar charts, pie charts, pictograms, simple frequency distributions and frequency polygons;
-use frequency density to construct and read histograms with equal and unequal intervals;
-calculate the mean, median and mode for individual data and distinguish between the purposes for which they are used;
-construct and use cumulative frequency diagrams; estimate the median, percentiles, quartiles and interquartile range;
-calculate the mean for grouped data; identify the modal class from a grouped frequency distribution.
35. Probability
36. Matrices
37. Transformations
38. Vectors in two dimensions
-calculate the probability of a single event as either a fraction or a decimal (not a ratio);
-calculate the probability of simple combined events using possibility diagrams and tree diagrams where appropriate. (In possibility diagrams outcomes will be represented by points on a grid and in tree diagrams outcomes will be written at the end of branches and probabilities by the side of the branches.)
-display information in the form of a matrix of any order; solve problems involving the calculation of the sum and product (where appropriate) of two matrices, and interpret the results; calculate the product of a scalar quantity and a matrix; use the algebra of $2 \times 2$ matrices including the zero and identity $2 \times 2$ matrices; calculate the determinant and inverse of a non-singular matrix. ( $\mathbf{A}^{-1}$ denotes the inverse of $\mathbf{A}$.)
-use the following transformations of the plane: reflection (M), rotation (R), translation (T), enlargement (E), shear (H), stretching (S) and their combinations (If $\mathrm{M}(a)=b$ and $\mathrm{R}(b)=c$ the notation $\operatorname{RM}(a)=c$ will be used; invariants under these transformations may be assumed.);
-identify and give precise descriptions of transformations connecting given figures; describe transformations using coordinates and matrices. (Singular matrices are excluded.)
-describe a translation by using a vector represented by $\binom{x}{y}, \overrightarrow{A B}$ or $\mathbf{a}$; add vectors and multiply a vector by a scalar;
-calculate the magnitude of a vector $\binom{x}{y}$ as
$\sqrt{x^{2}+y^{2}}$.
(Vectors will be printed as $\overrightarrow{A B}$ or a and their magnitudes denoted by modulus signs, e.g. $|\overrightarrow{A B}|$ or lal. In all their answers to questions candidates are expected to indicate a in some definite way, e.g. by an arrow or by underlining, thus $\overrightarrow{A B}$ or a);
-represent vectors by directed line segments; use the sum and difference of two vectors to express given vectors in terms of two coplanar vectors; use position vectors.

## MATHEMATICAL NOTATION

The list which follows summarises the notation used in the CIE's Mathematics examinations. Although primarily directed towards Advanced/HSC (Principal) level, the list also applies, where relevant, to examinations at O level/ S.C.

## Mathematical Notation

## 1. Set Notation

| $\in$ $\notin$ | is an element of is not an element of |
| :---: | :---: |
| $\left\{x_{1}, x_{2}, \ldots\right\}$ | the set with elements $x_{1}, x_{2}, \ldots$ |
| $\{x: \ldots\}$ | the set of all $x$ such that... |
| $\mathrm{n}(A)$ | the number of elements in set $A$ |
| $\varnothing$ | the empty set |
| $\mathscr{E}$ | universal set |
| $A^{\prime}$ | the complement of the set $A$ |
| $\mathbb{N}$ | the set of positive integers, $\{1,2,3, \ldots\}$ |
| $\mathbb{Z}$ | the set of integers $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ |
| $\mathbb{Z}^{+}$ | the set of positive integers $\{1,2,3, \ldots\}$ |
| $\mathbb{Z}_{n}$ | the set of integers modulo $n,\{0,1,2, \ldots, n-1\}$ |
| Q | the set of rational numbers |
| $\mathbb{Q}^{+}$ | the set of positive rational numbers, $\{x \in \mathbb{Q}: x>0\}$ |
| $\mathbb{Q}_{0}^{+}$ | the set of positive rational numbers and zero, $\{x \in \mathbb{Q}: x \geqslant 0\}$ |
| $\mathbb{R}$ | the set of real numbers |
| $\mathbb{R}^{+}$ | the set of positive real numbers $\{x \in \mathbb{R}$ : $x>0\}$ |
| $\mathbb{R}_{0}^{+}$ | the set of positive real numbers and zero $\{x \in \mathbb{R}$ : $x \geqslant 0\}$ |
| $\mathbb{R}^{n}$ | the real $n$ tuples |
| $\mathbb{C}$ | the set of complex numbers |
| $\subseteq$ | is a subset of |
| $\subset$ | is a proper subset of |
| $\nsubseteq$ | is not a subset of |
| $\not \subset$ | is not a proper subset of |
| U | union |
| $\bigcirc$ | intersection |
| [ $a, b$ ] | the closed interval $\{x \in \mathbb{R}: a \leqslant x \leqslant b\}$ |
| $[a, b)$ | the interval $\{x \in \mathbb{R}: a \leqslant x<b\}$ |
| ( $a, b$ ] | the interval $\{x \in \mathbb{R}: a<x \leqslant b\}$ |
| $(a, b)$ | the open interval $\{x \in \mathbb{R}: a<x<b\}$ |
| $y R x$ | $y$ is related to $x$ by the relation $R$ |
| $y \sim x$ | $y$ is equivalent to $x$, in the context of some equivalence relation |


| $=$ | is equal to |
| :--- | :--- |
| $\neq$ | is not equal to |
| $\equiv$ | is identical to or is congruent to |
| $\approx$ | is approximately equal to |
| $\cong$ | is isomorphic to |
| $\propto$ | is proportional to |
| $<; \ll$ | is less than, is much less than |
| $\leqslant, \searrow$ | is less than or equal to, is not greater than |
| $>; \gg$ | is greater than, is much greater than |
| $\geqslant, 4$ | is greater than or equal to, is not less than |
| $\infty$ | infinity |

## 3. Operations

$a+$
$a-$
$a \times b, a b, a$
$a \div b, \frac{a}{b}, a / b$
$a: b$
$\sum_{i=1}^{n} a_{i}$
$\sqrt{ } a$
$|a|$
$n!$
$\binom{n}{r}$

## 4. Functions

## f

$\mathrm{f}(x)$
$\mathrm{f}: A \rightarrow B$
$\mathrm{f}: x \mapsto y$
$\mathrm{f}^{-1}$
$g \circ f, g f$
$\lim _{x \rightarrow a} \mathrm{f}(x)$
function f
the value of the function f at $x$
f is a function under which each element of set $A$ has an image in set $B$
the function f maps the element $x$ to the element $y$
the inverse of the function $f$
the composite function of f and g which is defined by
$(\mathrm{g} \circ \mathrm{f})(x)$ or $\mathrm{gf}(x)=\mathrm{g}(\mathrm{f}(x))$
the limit of $\mathrm{f}(x)$ as $x$ tends to $a$
$\Delta x ; \delta x$
an increment of $x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}$
the derivative of $y$ with respect to $x$
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$
$\mathrm{f}^{\prime}(x), \mathrm{f}^{\prime \prime}(x), \ldots, \mathrm{f}^{(n)}(x) \quad$ the first, second, $\ldots, n$th derivatives of $\mathrm{f}(x)$ with respect to $x$
$\int y \mathrm{~d} x$
$\int_{a}^{b} y \mathrm{~d} x$
$a$ plus $b$
$a$ minus $b$
$a$ multiplied by $b$
$a$ divided by $b$
the ratio of $a$ to $b$
$a_{1}+a_{2}+\ldots+a_{n}$
the positive square root of the real number $a$ the modulus of the real number $a$
$n$ factorial for $n \in \mathbb{N}(0!=1)$
the binomial coefficient $\frac{n!}{r!(n-r)!}$, for $n, r \in \mathbb{N}, 0 \leqslant r \leqslant n$
$\frac{n(n-1) \ldots(n-r+1)}{r!}$, for $n \in \mathbb{Q}, r \in \mathbb{N}$
f
$\mathrm{f}(x)$
$\mathrm{f}: A \rightarrow B$
$\mathrm{f}: x \mapsto y$
$\mathrm{f}^{-1}$
$\mathrm{~g} \circ \mathrm{f}, \mathrm{gf}$
$\lim _{x \rightarrow a} \mathrm{f}(x)$
$\Delta x ; \delta x$
$\frac{\mathrm{~d} y}{\mathrm{~d} x}$
$\frac{\mathrm{~d}^{n} y}{\mathrm{~d} x^{n}}$
$\mathrm{f}^{\prime}(x), \mathrm{f}^{\prime \prime}(x), \ldots, \mathrm{f}^{(n)}(x)$
$\int^{y \mathrm{~d}} \mathrm{~d} x$
$\int_{a}^{b} y \mathrm{~d} x$
the $n$th derivative of $y$ with respect to $x$ indefinite integral of $y$ with respect to $x$
the definite integral of $y$ with respect to $x$ for values of $x$ between $a$ and $b$

| $\frac{\partial y}{\partial x}$ | the partial derivative of $y$ with respect to $x$ |
| :--- | :--- |
| $\dot{x}, \ddot{x}, \ldots$ | the first, second, $\ldots$ derivatives of $x$ with respect to time |

## 5. Exponential and Logarithmic Functions

e
$\mathrm{e}^{x}, \exp x$
$\log _{a} x$
$\ln x$
$\lg x$
base of natural logarithms exponential function of $x$ logarithm to the base $a$ of $x$ natural logarithm of $x$ logarithm of $x$ to base 10
6. Circular and Hyperbolic Functions and Relations
sin, cos, tan, cosec, sec, cot $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$ $\operatorname{cosec}^{-1}, \sec ^{-1}, \cot ^{-1}$ sinh, cosh, tanh, cosech, sech, coth $\sinh ^{-1}, \cosh ^{-1}, \tanh ^{-1}$, cosech $^{-1}$, sech $^{-1}$, coth $^{-1}$
\} the iverse circular reations
\}
\} the hyperbolic functions the inverse hyperbolic relations

## 7. Complex Numbers

i
z
$\operatorname{Re} z$
the real part of $z, \operatorname{Re}(x+\mathrm{i} y)=x$
$\operatorname{Im} z$
the imaginary part of $z, \operatorname{Im}(x+\mathrm{i} y)=y$
$|z| \quad$ the modulus of $z,|x+\mathrm{i} y|=\sqrt{ }\left(x^{2}+y^{2}\right),|r(\cos \theta+\mathrm{i} \sin \theta)|=r$
$\arg z$
$z^{*}$
the argument of $z, \arg (r(\cos \theta+\mathrm{i} \sin \theta))=\theta,-\pi<\theta \leqslant \pi$
the complex conjugate of $z,(x+\mathrm{i} y)^{*}=x-\mathrm{i} y$
8. Matrices
M
$\mathbf{M}^{-1}$
$\mathbf{M}^{\mathbf{T}}$
a matrix $\mathbf{M}$
the inverse of the square matrix $\mathbf{M}$
the transpose of the matrix $\mathbf{M}$ the determinant of the square matrix $\mathbf{M}$
9. Vectors

â
i, j, k
$|\mathbf{a}|$
$|\overrightarrow{A B}|$
a.b
$\mathbf{a} \times \mathrm{b}$
the vector a
the vector represented in magnitude and direction by the directed line segment $A B$
a unit vector in the direction of the vector a
unit vectors in the directions of the cartesian coordinate axes the magnitude of a
the magnitude of $\overrightarrow{A B}$
the scalar product of $\mathbf{a}$ and $\mathbf{b}$
the vector product of $\mathbf{a}$ and $\mathbf{b}$
10. Probability and Statistics

| $A, B, C$ etc. | events |
| :---: | :---: |
| $A \cup B$ | union of events $A$ and $B$ |
| $A \cap B$ | intersection of the events $A$ and $B$ |
| $\mathrm{P}(A)$ | probability of the event $A$ |
| $A^{\prime}$ | complement of the event $A$, the event 'not $A$ ' |
| $\mathrm{P}(A \mid B)$ | probability of the event $A$ given the event $B$ |
| $X, Y, R$, etc. | random variables |
| $x, y, r$, etc. | values of the random variables $X, Y, R$, etc. |
| $x_{1}, x_{2}, \ldots$ | observations |
| $f_{1}, f_{2}, \ldots$ | frequencies with which the observations $x_{1}, x_{2}, \ldots$ occur |
| $\mathrm{p}(x)$ | the value of the probability function $\mathrm{P}(X=x)$ of the discrete random variable $X$ |
| $p_{1}, p_{2}, \ldots$ | probabilities of the values $x_{1}, x_{2}, \ldots$ of the discrete random variable $X$ |
| $\mathrm{f}(x), \mathrm{g}(x), \ldots$ | the value of the probability density function of the continuous random variable $X$ |
| $\mathrm{F}(x), \mathrm{G}(x), \ldots$ | the value of the (cumulative) distribution function $\mathrm{P}(X \leqslant x)$ of the random variable $X$ |
| $\mathrm{E}(X)$ | expectation of the random variable $X$ |
| $\mathrm{E}[\mathrm{g}(X)]$ | expectation of $g(X)$ |
| $\operatorname{Var}(X)$ | variance of the random variable $X$ |
| $\mathrm{G}(t)$ | the value of the probability generating function for a random variable which takes integer values |
| $\mathrm{B}(n, p)$ | binomial distribution, parameters $n$ and $p$ |
| $\mathrm{N}\left(\mu, \sigma^{2}\right)$ | normal distribution, mean $\mu$ and variance $\sigma^{2}$ |
| $\mu$ | population mean |
| $\sigma^{2}$ | population variance |
| $\sigma$ | population standard deviation |
| $\bar{x}$ | sample mean |
| $s^{2}$ | unbiased estimate of population variance from a sample, $s^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2}$ |
| $\phi$ | probability density function of the standardised normal variable with distribution $\mathrm{N}(0,1)$ |
| $\Phi$ | corresponding cumulative distribution function |
| $\rho$ | linear product-moment correlation coefficient for a population |
| $r$ | linear product-moment correlation coefficient for a sample |
| $\operatorname{Cov}(X, Y)$ | covariance of $X$ and $Y$ |

## BOOKLIST

These titles represent some of the texts available in the UK at the time of printing this booklet. Teachers are encouraged to choose texts for class use which they feel will be of interest to their students and will support their own teaching style. ISBN numbers are provided wherever possible.

## O LEVEL MATHEMATICS SYLLABUS D 4024

Bostock, L, S Chandler, A Shepherd, E Smith ST(P) Mathematics Books 1A to 5A (Stanley Thornes)

| Book 1A | 0 | 748705406 |
| :--- | :--- | :--- |
| Book 1B | 0 | 748701435 |
| Book 2A | 0 | 748705422 |
| Book 2B | 0 | 748701443 |
| Book 3A | 0 | 748712607 |
| Book 3B | 0 | 748705449 |
| Book 4A | 0 | 748715010 |
| Book 4B | 0 | 748715835 |
| Book 5A | 0 | 748716017 |

Buckwell, Geoff Mastering Mathematics (Macmillan Education Ltd) 0333620496
Collins, J, Warren, T and C J Cox Steps in Understanding Mathematics (John Murray)

| Book 1 | 0 | 719544505 |
| :--- | :--- | :--- |
| Book 2 | 0 | 719544513 |
| Book 3 | 0 | 719544521 |
| Book 4 | 0 | $71954453 \times$ |
| Book 5 | 0 | 719544548 |

Cox, C J and D Bell Understanding Mathematics Books 1 - 5 (John Murray)

| Book 1 | 0 | 719547520 |
| :--- | :--- | :--- |
| Book 2 | 0 | 719547547 |
| Book 3 | 0 | 719547563 |
| Book 4 | 0 | 719550300 |
| Book 5 | 0 | 719550327 |

Farnham, Ann Mathematics in Focus (Cassell Publishers Ltd) 0304317411
Heylings, M R Graded Examples in Mathematics (8 topic books and 1 revision book) (Schofield \& Sims)

Mathematics in Action Group Mathematics in Action Books 1, 2, 3B, 4B, 5B (Nelson Blackie)
Book $1 \quad 0174314167$
Book 20174314205
Book 3B 0174314345
Book 4B 0174314388
MSM Mathematics Group MSM Mathematics Books 1, 2, 3Y, 4Y, 5Y (Nelson)
Murray, Les Progress in Mathematics Books 1E to 5E (Stanley Thornes)
Book 1E 0859507440
Book 2E 0859507459
Book 3E 0859507467
Book 4E 0859507475
Book 5E 0859507335

National Mathematics Project (NMP) Mathematics for Secondary Schools Red Track Books 1 to 5 (Longman Singapore Publishers Pte Ltd)

| Book 1 | 0 | 582 | 206960 |
| :--- | :--- | :--- | :--- |
| Book 2 | 0 | 582 | $206987 / 206995$ |
| Book 3 | 0 | 582 | 20727 |
| Book 4 | 0 | 582 | 20725 |
| Book 5 | 0 | 582 | 20726 |
| Bor |  |  |  |
| Smith, Ewart Examples in Mathematics for GCSE Higher Tier (Second edition) |  |  |  |
| (Stanley Thornes) 7487 27647 |  |  |  | (Stanley Thornes) 748727647

Smith, Mike and lan Jones Challenging Maths for GCSE and Standard Grade (Heinemann)
SSMG/Heinemann Team Heinemann Mathematics 14-16 Upper Course (Heinemann)

