Cambridge Assessment International Education

Cambridge Ordinary Level

PHYSICS

Paper 4 Alternative to Practical

MARK SCHEME

Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

5054/42	Cambridge O Level - Mark Scheme October/N PUBLISHED	ember 2017
Question	Answer	Marks
1(a)(i)	4.7 (cm) correct answer only	B1
1(a)(ii)	$47(.0) \mathrm{cm}$ unit required	B1
1(b)(i)	1.14, 1.302 d.p. required in both	B1
1(b)(ii)	to reduce the effect of errors in starting / stopping the stopwatch / to reduce the effect of reaction time / to calculate an average / to reduce the percentage error	B1
1(c)(i)	axes labelled quantity and unit axes correct way round	B1
	scales linear, not awkward, start from (0,0)	B1
	points plotted accurately	B1
	smooth best fit straight line drawn	B1
1(c)(ii)	candidate's value to $\pm 1 / 2$ small square from a correct extrapolation	B1
1(c)(iii)	values indicated on graph or triangle drawn and \geqslant half the range of the plotted points ($\Delta h \geqslant 12.5$)	B1
	$m=(-) 0.04 \pm 0.01$	B1
1(d)	candidate's c/m value correctly calculated	B1
1(e)	YES (must be stated) and values very close / close enough / within the limits of experimental error / < 10\% OR NO (must be stated) and values not close / not close enough / outside the limits of experimental error / > 10\%	B1

Question	Answer	Marks
2(a)(i)	$88\left({ }^{\circ} \mathrm{C}\right)$ c.a.o.	B1
2(a)(ii)	to allow thermometer to read the maximum temperature of the hot water / to give the thermometer time to respond / to wait until the temperature on thermometer stops rising/so that temperature of thermometer equals temperature of the water/to allow thermometer to reach thermal equilibrium	B1
2(b)(i)	s, ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$	B1
2(b)(iii)	significant change and temperature drops are not close / similar / there is a $3^{\circ} \mathrm{C}$ difference or not significant change and temperature drops are close/similar/there is only a $3^{\circ} \mathrm{C}$ difference	B1
2(c)(i)	use a lid / cover the beaker	B1
2(c)(ii)	lag the bottom of the beaker/use thicker lagging	B1
2(d)	any one from: same volume of (hot) water / same (size) beaker / room temperature / same time (of cooling)	B1

Cambridge O Level - Mark Scheme PUBLISHED	October/November 2017	
Question	Answer	Marks
3(a)(i)	normal drawn at point Q and extended to cross CD with point R correctly labelled	B1
3(a)(ii)	$\alpha=30 \pm 1^{\circ}$ unit required	B1
3(b)(i)	straight line through crosses, crossing CD at S and QR at T, S and T both labelled and $x=5.3 \pm 0.1(c m)$	B1
3(b)(ii)	$y=3.5 \pm 0.1(\mathrm{~cm})$	B1
3(c)	candidate's x / y calculated correctly	B1

Question	Answer	Marks
$4(\mathrm{a})$	wire, ammeter, power supply in series and voltmeter in parallel with the wire (or the cell, if the only resistance in the circuit is provided by the wire)	B1
	symbols for cell / battery / power supply, ammeter and voltmeter correct	B1
$4(\mathrm{~b})$	measure V and I (and calculate R)	B1
	repeat for different lengths	B1
4 (c)	plot a graph of R against l (can be credited from $b) /$ (use table $/$ readings to) compare resistance values as length changes	B1

