O Leve,

Cambridge Assessment International Education
 Cambridge Ordinary Level

COMBINED SCIENCE

5129/21
Paper 2 Theory
MARK SCHEME
Maximum Mark: 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answer	Marks
$1(\mathrm{a})$	$W=f d$ or $50 \times 10 \times 2.4 ;$ $1200 ;$	$\mathbf{2}$
$1(\mathrm{~b})$	$P=W / t$ or $1200 \div 0.8$ $1500 ;$	$\mathbf{2}$

Question	Answer	Marks
2	amino acids ; $\frac{\text { kidneys ; }}{\text { glycogen ; }}$ hormones ;	4

Question		Answer	Marks
3(a)(i)	44 ;		1
3(a)(ii)	$\begin{array}{ll} 88 ; \\ 2.2 ; & 36 ; \end{array}$		3
3(b)			1

Question		Answer	Marks
4	$16 ;$	3	

Question			Answ	Marks
5	point aerobic resp anaerobic resp			4
	oxygen used	\checkmark	\times	
	glucose used	\checkmark	\checkmark	
	carbon dioxide produced	\checkmark	\times	
	lactic acid produced	\times	\checkmark	

Question	Answer	Marks
6(a)(i)	$\begin{aligned} & 450 ; \\ & 200 ; \end{aligned}$	2
6(a)(ii)	Iron ;	1
6(a)(iii)	3 2;	1
6(b)		2
6(c)	making fertilisers ;	1

Question	Answer	Marks
7(a)(i)	any one from - infra-red; - visible light ; - UV ; - X-ray ; - gamma;	1
7(a)(ii)	$3 \times 10^{8}(\mathrm{~m} / \mathrm{s})$;	1
7(b)	$\begin{aligned} & v=f \lambda \text { or } 3 \times 10^{8}=2.4 \times 10^{9} \times \text { wavelength ; } \\ & 0.125 / 1.25 \times 10^{-1} \end{aligned}$	2
7(c)	normal perpendicular to top surface of metal ; reflected ray ;	2

Question	Answer	Marks
8(a)	line (labelled N) ending on any part of the nucleus ;	1
8(b)(i)	contains haemoglobin ; to carry oxygen ;	2
8(b)(ii)	any two from - mesophyll cell has a cell wall (but WBC does not) ; - mesophyll cell contains chloroplasts (but WBC does not) ; - mesophyll cell has large (sap) vacuole (but WBC does not) ; - mesophyll cell has a spherical nucleus, whereas WBC has a lobed nucleus ;	2

Question

Question		Answer	Marks
10(a)(i)	$\begin{aligned} & 5\left(\mathrm{dm}^{3} \text { per } \mathrm{min}\right) \\ & 32\left(\mathrm{dm}^{3} \text { per } \mathrm{min}\right) \end{aligned}$		1
10(a)(ii)	$32-5=27$;		1
10(a)(iii)	$27 / 5 \times 100=540 \% ;$		1
10(b)	heart pumps faster ; heart pumps more blood per beat ;		2
10(c)	any one from - fitness; - age ; - sex; - strength of heart ; - body size/weight ; - illness;		1

Question	Answer	Marks
11	any three from - electrons/negative charges; - move/transfer/loss of electrons; - opposite charge induced in glass ; - opposite charges attract ;	3

Question		Answer	Marks
12	proton number ; 14 ; Neutrons ; $2,8,4 \text {; }$		4

Question		Answer	Marks
13	D ; C ;		
	A ; $;$		

Question	Answer	Marks
14(a)	$\begin{aligned} & \mathbf{H}=\text { testa } / \text { seed coat ; } \\ & \mathbf{J}=\text { radicle ; } \\ & \mathbf{K}=\text { cotyledon ; } \end{aligned}$	3
14(b)	seed surrounded by water ;	1
	any one from - prevents oxygen reaching seed; - oxygen needed for germination ; - seed cannot respire without oxygen ;	1

Question	Answer	Marks
$15(\mathrm{a})$	condenser ;	1
$15(\mathrm{~b})$	burette ;	1
$15(\mathrm{c})$	beaker ;	1
$15(\mathrm{~d})$	burette/pipette ;	1

Question	Answer	Marks
16(a)	any three from - magnetic field in coil X is produced (as switch is closed) ; - magnetic field changes when switch is closed/links/cuts coil \mathbf{Y}; - e.m.f induced ; - e.m.f induced/reading only when field changes ;	3
16(b)	smaller e.m.f. ; smaller change in magnetic field ;	2

Question	Answer	Marks
$17(\mathrm{a})$	line going from flies to spiders with arrow pointing to spiders ; line going from spiders to blue tits with arrow pointing to blue tits ;	$\mathbf{2}$
$17(\mathrm{~b})$	(oak) tree;	$\mathbf{1}$
17 (c)	number of blue tits would decrease ; as owls would eat more blue tits ; or number of blue tits would increase ; as there are more caterpillars to eat (as not eaten by wood-peckers) ;	$\mathbf{2}$

Question	Answer	Marks
18	sulfur contains one type of atom ; water contains two different atoms ; chemically combined ;	$\mathbf{3}$

Question	Answer	Marks
19(a)	element/atom;	1
	nucleon/mass ; proton/atomic ;	1
19(b)(i)	any three from - alpha emission ; - helium nucleus emitted; - from nucleus (of Am) ; - to produce a different element ;	3
19(b)(ii)	Ionisation ;	1
19(b)(iii)	$\begin{aligned} & V=I R \text { or } V=1.0 \times 10^{-11} \times 4.5 \times 10^{7} \\ & 4.5 \times 10^{-4} ; \\ & V ; \end{aligned}$	3

Question	Answer	Marks
20(a)	$\begin{aligned} & \mathbf{L}=\text { stomach } ; \\ & \mathbf{R}=\text { colon } ; \end{aligned}$	2
20(b)	any two from - peristalsis ; - (circular/ileum) muscles contract behind the food; - wave (of contraction) passes along ileum ; - muscles in front of food relax ;	2

Question	Answer	Marks
$21(\mathrm{a})$	methane ;	
$21(\mathrm{~b})$	fractional distillation ;	$\mathbf{1}$
$21(\mathrm{c})$	exothermic ;	$\mathbf{1}$
$21(\mathrm{~d})$	compound/molecule containing of carbon and hydrogen only ;	1

