

Cambridge International Examinations

Cambridge International Advanced Level

DESIGN AND TECHNOLOGY

9705/31

Paper 3

October/November 2016

MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

		Maul. Oakarra	O. II - I	Dans
P	age 2	Mark Scheme Cambridge International A Level – October/November 2016	Syllabus 9705	Paper 31
		Cambridge international A Level - October/November 2010	9103	31
		Section A		
Pa	rt A -	· Product Design		
1	(a)	Description of process		
•	(ω)	fully detailed	3 -	- 5
		some detail,	0 -	- 2
		quality of sketchesup to	2 7	× 2 [14]
	(b)	Rotational moulding		
	(- /	 large hollow shape 		
		 excellent finish 		
		 minimal wastage – exact amounts used 		
		Turning		
		regular cylindrical shape		
		 high quality finish 		
		 shape easily repeated 		
		Etching		
		accurate detail		
		 relatively quick operation 		
		 needs minimal equipment/cost 	3 :	× 2 [6]
				[Total:20]
				[10ta1.20]
•	(-)	Cuitable materials		
2	(a)	Suitable material: - appropriate straight grained hardwood		
		appropriate straight grained hardwood aluminium alloy		
		stainless steel		
		nylon/abs/polypropylene		1
		Reasons:		
		can produce high quality finish		
		will gentle flex on bumpy conditions		
		 easy to bend/press/shape 		
		•	2 :	× 1 [3]
	(h)	Description to include: shaping/forming/pressing finishing/laminating		
	(13)	Quality of description:		

3 – 7

0 – 2

up to 2

[9]

Quality of description:

fully detailed

some detailQuality of sketches

	Page 3	Mark Scheme	Syllabus	Paper
		Cambridge International A Level – October/November 2016	9705	31
	(c)	Explanation could include: - change in process - change in materials - use of jigs, formers, moulds - simplification of design Quality of explanation: - logical, structured - limited detail Quality of sketches	4 – 0 – up to	- 3
				FT - 4 - 1 - 001
				[Total: 20]
3	3 (a)	Tool identified and clear description	2 ×	(2 [4]
	(b)	Full description (no sketches max 3) Up to 2 key features described 0 -	3 – - 2 4 ×	
	(c)	Full description (no sketches max 3) Up to 2 key features described 0 -	3 – - 2 4 ×	

Page 4		Syllabus	Paper
	Cambridge International A Level – October/November 2016	9705	31
Part B –	Practical Technology		
4 (a)	Toughness – The amount of energy a material can absorb before it browithstand sudden impact.	eaks. The ab	ility to
	Elasticity – The ability of a material to absorb force and flex in different	nt directions,	returning
	to its original position.	2 ×	1 [2]
(b)	Tough material – e.g. mild steel, duralumin, abs, polypropylene		
	Elastic material – rubber, polypropylene, steel	2 ×	1 [2]
	Description to include: holding sample, application of tensile stress Quality of description: - fully detailed - some detail - limited detail Quality of sketches	6 – 4 – 0 – up to	5 3
` ,	Explanation could include: - functional requirements - safety limits		
	Quality of explanation: - logical, structured - limited detail	4 – 0 –	-
			[Total: 20]

5 (a) Full description of mechanism Example

3 1

For three mechanisms

 3×4 [12]

(b) Mechanical advantage – the ratio of the force produced by a machine to the input force applied to it.

Velocity ration – the ratio of a distance through which any part of a machine moves to that which the driving part moves during the same time. (Effort: distance moved by effort)

Quality of explanation:

logical, structured
limited detail
5 - 8
0 - 4
[8]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9705	31

- **6 (a)** Description should include:
 - orientation of LED
 - heat sink on leg
 - clean track on PCB
 - position LED
 - heat joint area with tip of soldering iron
 - apply solder, wait for flow, remove solder, remove iron

Quality of description:

fully detailed (most stages)	4 – 5	
 limited detail 	0 - 3	
Quality of sketches	up to 2	[7]

(b) Description should include:

- details of mould
- melt metal, pour into preheated mould
- cool, remove, finish

Quality of description:

_	fully detailed (most stages)	4 – 5	
_	limited detail	0 - 3	
Qu	ality of sketches	up to 2	[7]

(c) Explanation should include:

- welding uses heat to join similar materials by causing <u>coalescence</u>. This is done by <u>melting</u> the work-pieces and adding a filler material of similar consistency.
- Hard soldering (e.g. silver soldering) uses a lower-melting-point material to join the work-pieces; the work-pieces are not heated to melting point.
- Approximate melting temps
- use of fluxes

Quality of explanation:

_	logical, structured	4 – 6	
_	limited detail,	0 - 3	[6]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9705	31

Part C – Graphic Products

7	Dis - - - -	cussion should refer to: target market/research unit costs set up costs demand other commercial issues		
	Exa - -	amination of issues wide range of relevant issues limited range	5 – 9 0 – 4	
	Qua - -	ality of explanation logical, structured limited detail,	4 – 7 0 – 3	
	Sup - - -	oporting examples / evidence specific products specific marketing/commercial examples specific details of quantity production methods	4 ITot	al: 20]
8	(a)	correct scale correct isometric semi-ellipse semi circles accuracy/quality	2 2 3 3 2	[12]
	(b)	Explanation should include: - planometric – 45° × 45°, 60° × 30° - perspective – one, two or three point - appropriate usage		
		Quality of explanation: - logical, structured - some detail - limited detail	6 – 8 4 – 5 0 – 3	[8]
9	(a)	correct outline/orientation correct scale overall accuracy/quality quality of rendering	3 2 3 2	[10]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9705	31

(b) explanation should include:

- initial design ideas, quick sketch, quick flow of possibilities, OK to share with design team / client
- working drawing full detailed and dimensioned enable 3rd party manufacture presentation high quality, photo ready, realistic, to clients / advertising

quality of explanation:

_	logical, structured	8 – 10	
_	some detail	4 – 7	
-	limited detail,	0 - 3	[10]

Page 8	Mark Scheme	Syllabus	Pape
	Cambridge International A Level – October/November 2016	9705	31
Section B			
oection b			
Analysis			
Analysis			
nalysis	f the given situation/problem.		

Specification

Detailed written specification of the design requirements.

At least five specification points other than those given in the question.

[5]

Exploration

Bold sketches and brief notes to show exploration of ideas for a design solution, with reasons for selection.

_	range of ideas	[5]
_	annotation related to specification	[5]
_	marketability, innovation	[5]
_	evaluation of ideas, selection leading to development	[5]
_	communication	[5]

Development

Bold sketches and notes showing the development, reasoning and composition of ideas into a single design proposal. Details of materials, constructional and other relevant technical details.

_	developments	[5]
_	reasoning	[5]
_	materials	[3]
_	constructional detail	[7]
_	communication	[5]

Proposed solution

Produce drawing/s of an appropriate kind to show the complete solution.

_	proposed solution	[10]
_	details/dimensions	[5]

Evaluation

Written evaluation of the final design solution. [5]