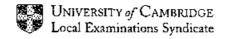


JUNE 2002


GCE Advanced Subsidiary Level Advanced International Certificate of Education

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709 /6, 0390 /6

MATHEMATICS (Probability and Statistics 1)

Page 1	Mark Scheme	Syllabus	Paper
·	AS Level & AICE Examinations – June 2002	9709, 0390	6

1 (i) not independent $P(A) \times P(B) \neq P(A \text{ and } B)$	B1 B1dep	2	
(ii) not mutually exclusive P(A and B) ≠ 0	B1 B1	2	Can be stated in words
2 both axes correct	B1		For correct scales and labels on at least one axis
points	MI Al		For points at upper bounds or 15.5 or 14.5 All correct and smooth curve or straight lines
median IQ range	Bift Ml		On mid-points or upper bounds For evaluating their UQ – theirLQ
	Alft	6	For correct answer, ft on correct upper bounds only
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		For $A = 1, 4, 9, 16$, or $1,1,1,4,9,16$ Any three correct probabilities for 3 different vals of A
	Αl	3	All correct
(ii) $E(A) = 1 \times 1/2 + 4 \times 1/6 + 9 \times 1/6 + 16 \times 1/6$ = 5.33 Var $(A) = 1^2 \times \frac{1}{2} + 4^2 \times \frac{1}{6} + \dots - (5.33)^2$ = 30.9	MI AI MI	4	For calculation of Σxp where Σp must be 1 For correct answer For calculation of Σx^2p – (their $E(A)$) ² Σp need not be 1 For correct answer
4 (i) - 47.2/30 = -1.573 OR $\Sigma x - \Sigma 110 = -47.2$ and $\Sigma 110 = 3300$	Bi	_	
$\bar{x} = 110 - 1.573 = 108 (108.4)$ standard deviation = $\sqrt{\frac{5460}{30} - (-1.573)^2}$ = 13.4	B1 M1 A1	4	For correct answer For $\frac{5460}{30}$ – (their coded mean) ² For correct answer
(ii) $z = \frac{110 - 107.6}{13.8} = 0.174$ $P(X > 110) = 1 - \Phi(0.174)$ = 1 - 0.5691 = 0.431	MI MI		For standardising, can have $\sqrt{13.8}$ on denom not 13.8 ² For using tables correctly and finding a correct area from their z.
0.121	A.1	3	For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	AS Level & AICE Examinations – June 2002	9709, 0390	6

71	MI		For dividing by 2 or 21
5 (i) $\frac{7!}{2!} = 2520$	A!	2	For dividing by 2 or 2! For correct answer
			Tot concertained
(2) 5! 21 262	Вl		For 5! or equivalent
(ii) $\frac{5!}{2!} \times 3! = 360$	Μl		For multiplying by 3! or dividing by 2! or both
	Al	3	For correct answer
	1.10	••••	E 40 63 7 (1)
(iii) 4/7 of 2520 = 1440	M2 Al		For 4/7 of their (i) For correct answer
(111) 477 01 2320 - 1440	AI		For correct answer
6! 6!	Mi		For summing options for ending in 2, 6, 8
OR $6! + \frac{6!}{2!} + \frac{6!}{2!} = 1440$			
	Al		For correct options
	Al	3	For correct answer
(ii) (i) $\mu = 3.6$	Βl		Stated or can be calculated later on
	l		
$\frac{2.8 - their\mu}{\sigma} = -0.4$	Ml		For equation relating μ or 3.6 and σ . Must be
σ	MI		standardised, can have ±0.4
σ = 2	MI		Solving the correct equation or with a second correct equation relating μ and σ
0 . 2	Αι	4	For correct answer
	L		
(ii) $(0.6554)^2 \times (0.3446)^2 \times {}_4C_2$	Ml		For attempted binomiai calculation of any 2 or 3 of
$+(0.6554)^3 \times (0.3446)^1 \times {}_{4}C_3 + (0.6554)^4$			P(2), P(3), P(4), needs 0.6554 in
	Bl		For correct numerical expression for P(2) or P(3)
= 0.879	Al		All in correct form
(= 0.3061 +0.3881 +0.1845)	Al		For correct answer
OD 1 (0.24404 (0.6554)(0.24403 C.	M1		For calculation of 1 - any 2 or 3 of P(0), P(1), P(2)
OR 1 - $(0.3446)^4$ - $(0.6554)^1$ × $(0.3446)^3$ × $_4$ C ₃			For correct numerical expression for P(1) or P(2)
(=1-0.0141-0.1072)	B! Al		All in correct form
= 0.879	Al	4	For correct answer
$7 ext{ (i) (a) } np = 11$	BI		
np(1-p) = 4.95	Bl		
$n = 20 \ (p = 0.55)$	MI		For solving, need to find a value for n
	Al	4	For correct answer
d > 200 - 11 - 12 - 12 - 13 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15			m (i) 12 (i) 12 (i) 12 (ii)
(b) $P(X = 12) = (0.55)^{12} \times (0.45)^8 \times {}_{20}C_{12}$	MI	_	For (their p) ¹² × (their q) ⁿ⁻¹² × $k \neq 1$
= 0.162	A1	2	For correct answer
(ii) $\mu = 100 \times 0.3 = 30$, $\sigma^2 = 100 \times 0.3 \times 0.7$	Bl		For both mean and variance correct, allow σ =21
	MI		For standardising with or without cc, allow their
$P(X < 35) = \Phi\left(\frac{34.5 - 30}{\sqrt{21}}\right)$			21 or their $\sqrt{21}$ in denom
\ \- /	MI		For use of any continuity correction 34.5 or 35.5
$=\Phi(0.9820)$	Al		
= 0.837 (exact)		4	For correct answer