Page 1	Mark Scheme	Syllabus
	MATHEMATICS – JUNE 2003	9709

Mark Scheme Notes

- Marks are of the following three types:
 - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 2	Mark Scheme	Syllabus
	MATHEMATICS – JUNE 2003	9709

- The following abbreviations may be used in a mark scheme or used on the scripts:
 - AEF Any Equivalent Form (of answer is equally acceptable)
 - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 - CWO Correct Working Only often written by a 'fortuitous' answer
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)
 - SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √"marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Paper 1 (Pure 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

Γ

1.	$(2x - 1/x)^5. 4^{th} \text{ term needed.}$ $\rightarrow {}_5C_3 = 5.4/2$ $\rightarrow x 2^2 x (-1)^3$ $\rightarrow -40$	M1 DM1 A1 [3]	Must be 4^{th} term – needs $(2x)^2 (1/x)^3$ Includes and converts ${}_5C_2$ or ${}_5C_3$ Co Whole series given and correct term not quoted, allow 2/3
But sir s ² + c ²	sin3x + 2cos3x = 0 tan3x = -2 x = 38.9 (8) x = 98.9 (8) x = 158.9 (8) n ² 3x + cos ² 3x = 0 etc. M0 n ² 3x = (-2cos3x) ² plus use of f = 1 is OK sin(3x + α) or √5cos(3x - α) both	M1 A1 A1√ A1√ [4]	Use of tan = sin ÷ cos with 3x Co For 60 + "his" For 120 + "his" and no others in range (ignore excess ans. outside range) Loses last A mark if excess answers in the range
3.	(a) dy/dx = $4 - 12x^{-3}$	B2, 1 [2]	One off for each error (4, -, 12, -3)
(a) (qu co)	(b) $\int = 2x^2 - 6x^{-1} + c$ notient OK M1 correct formula, A1	3 x B1 [3]	One for each term – only give +c if obvious attempt at integration
4.	$a = -10 a + 14d = 11 d = \frac{3}{2}$	M1	Using a = (n – 1)d
	a + (n – 1)d = 41 n = 35	M1 A1	Correct method – not for a + nd Co
Either	S _n = n/2(2a + (n −1)d) or n/2(a + l) = 542.5	M1 A1 [5]	Either of these used correctly For his d and any n
5.	(i) 2a + b = 1 and 5a + b = 7 → a = 2 and b = -3	M1 A1 [2]	Realising how one of these is formed Co
	(ii) $f(x) = 2x - 3$ $ff(x) = 2(2x - 3) - 3$ $\rightarrow 4x - 9$ = 0 when x = 2.25	M1 DM1 A1 [3]	Replacing "x" by "his ax + b" and "+b" For his a and b and solved = 0 Co

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

6.	(i) $-\pi$ π π π π	B2, 1 [2]	For complete cycle, shape including curves, not lines, -3 to +3 shown or implied, for $-\pi$ to π . Degrees ok
	(ii) $x = \pi/2$, $y = 3$ (allow if 90°) $\rightarrow k = 6/\pi$ co.	M1 A1 [2]	Realising maximum is $(\pi/2, 3)$ + sub Co (even if no graph)
	(iii) (- $\pi/2$, -3) – must be radians	B1 [1]	Co (could come from incorrect graph)
7.	(i) $L_1 \xrightarrow{\gamma} A L_2$ B (7,4) \times		
	Gradient of $L_1 = -2$ Gradient of $L_2 = \frac{1}{2}$ Eqn of $L_2 y - 4 = \frac{1}{2}(x - 7)$	B1 M1 M1A1√ [4]	Co – anywhere Use of $m_1m_2 = -1$ Use of line eqn – or y = mx + c. Line must be through (7, 4) and non- parallel
	(ii) Sim Eqns $\rightarrow x = 3, y = 2$	M1 A1	Solution of 2 linear eqns Co
	AB = $\sqrt{(2^2 + 4^2)} = \sqrt{20}$ or 4.47	M1A1 [4]	Correct use of distance formula. Co
8.	(i) $\overrightarrow{BA} = \mathbf{a} - \mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$	M1	Knowing how to use position vector for \overrightarrow{BA} or \overrightarrow{BC} – not for \overrightarrow{AB} or \overrightarrow{CB}
	Dot product = $-2 + 8 - 6 = 0$	M1A1	Knowing how to use $x_1y_1 + x_2y_2 + x_3y_3$. Co
	\rightarrow Perpendicular	A1 [4]	Correct deduction. Beware fortuitous (uses \overrightarrow{AB} or \overrightarrow{CB} – can get 3 out of 4)
	(ii) $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ $\overrightarrow{AD} = \mathbf{d} - \mathbf{a} = -5\mathbf{i} + 10\mathbf{j} + 5\mathbf{k}$	M1	Knowing how to get one of these
	These are in the same ratio \ parallel	M1	Both correct + conclusion. Could be dot product = $60 \rightarrow angle = 0^{\circ}$
	Ratio = 2:5 (or √24: √150)	M1A1 [4]	Knowing what to do. Co. Allow 5:2

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

9.	B 8 0 c		
	(i) $\theta = 1$ angle BOC = π - θ Area = $\frac{1}{2}r^2\theta = 68.5$ or $32(\pi$ -1) (or $\frac{1}{2}$ circle-sector)	B1 M1 A1 [3]	For π-θ or for ½πr ² – sector Use of ½r ² θ Co NB. 32 gets M1 only
	(ii) $8 + 8 + 8\theta = \frac{1}{2}(8 + 8 + 8(\pi - \theta))$ Solution of this eqn	M1 M1	Relevant use of s = r θ twice Needs θ – collected – needs
	\rightarrow 0.381 or ¹ / ₃ (π -2)	A1 [3]	perimeters Co.
	(iii) $\theta = \pi/3$ AB = 8cm BC = 2 x 8sin $\pi/3$ = 8 $\sqrt{3}$	B1 M1	Co. Valid method for BC – cos rule, Pyth
	Perimeter = 24 + $8\sqrt{3}$	A1 [3]	allow decimals here Everything OK. Answer given NB. Decimal check loses this mark
10.	y = √(5x + 4)		
	(i) $dy/dx = \frac{1}{2}(5x + 4)^{-\frac{1}{2}} \times 5$ x = 1, $dy/dx = 5/6$	B1B1 B1 [3]	$\frac{1}{2}(5x + 4)^{-\frac{1}{2}} \times 5$ B1 for each part Co
	(ii) dy/dt = dy/dx x dx/dt = $5/6 \times 0.03$ $\rightarrow 0.025$	M1 A1√ [2]	Chain rule correctly used For (i) x 0.03
	(iii) realises that area \rightarrow integration	M1	Realisation + attempt – must be (5x + 4) ^k
	$\int = (5x+4)^{3/2} \div {}^{3}/_{2} \div 5$	A1A1	For $(5x + 4)^{3/2} \div {}^{3}/_{2}$. For $\div 5$
	Use of limits → 54/15 - 16/15 = 38/15 = 2.53	DM1 A1 [5]	Must use "0" to "1" Co

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

			[]]
11.	(i) $8x - x^2 = a - x^2 - b^2 - 2bx + equating \rightarrow b = -4a = b^2 = 16 (i.e. 16 - (x - 4)^2)$	M1 B1 A1 [3]	Knows what to do – some equating Anywhere – may be independent For 16- $()^2$
	(ii) dy/dx = 8 – 2x = o when \rightarrow (4, 16) (or from –b and a)	M1 A1 [2]	Any valid complete method Needs both values
	(iii) $8x - x^2 \ge -20$ $x^2 - 8x - 20 = (x - 10)(x + 2)$ End values -2 and 10 Interval $-2 \le x \le 10$	M1 A1 A1 [3]	Sets to 0 + correct method of solution Co – independent of < or > or = Co – including \leq (< gets A0)
	g: $x \rightarrow 8x - x^2$ for $x \ge 4$		
	(iv) domain of g^{-1} is $x \le 16$ range of g^{-1} is $g^{-1} \ge 4$	B1√ B1 [2]	From answer to (i) or (ii). Accept <16 Not f.t since domain of g given
	(v) $y = 8x - x^2 \rightarrow x^2 - 8x + y = 0$	M1	Use of quadratic or completed square expression to make x subject
or (x –	$x = 8 \pm \sqrt{(64 - 4y)} \div 2$ $g^{-1}(x) = 4 + \sqrt{(16 - x)}$ $(-4)^{2} = 16 - y \rightarrow x = 4 + \sqrt{(16 - y)}$ $\rightarrow y = 4 + \sqrt{(16 - x)}$	DM1 A1 [3]	Replaces y by x Co (inc. omission of -)

June 2003

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Paper 2 (Pure 2)

	Page 1	Mark Scheme	Syllabus	Paper
		A AND AS LEVEL – JUNE 2003	9709	2
1	EITHER:	State or imply non-modular inequality $(x - 4)^2 > (x + 1)^2$ or corresponding equation Expand and solve a linear inequality, or equivalent Obtain critical value $1\frac{1}{2}$ State correct answer $x < 1\frac{1}{2}$ (allow \leq)) ² ,	B1 M1 A1 A1
	OR:	State a correct linear equation for the critical value e. Solve the linear equation for <i>x</i> Obtain critical value $1\frac{1}{2}$, or equivalent State correct answer $x < 1\frac{1}{2}$.g. 4 - <i>x</i> = <i>x</i>	+ 1 B1 M1 A1 A1
	OR:	State the critical value $1\frac{1}{2}$, or equivalent, from a graph inspection or by solving a linear inequality State correct answer $x < 1\frac{1}{2}$	ohical metho	od or by B3 B1
				[4]
2 (i) <i>EITHER:</i>	Expand <i>RHS</i> and obtain at least one equation for <i>a</i> Obtain $a^2 = 9$ and $2a = 6$, or equivalent State answer <i>a</i> = 3 only		M1 A1 A1
	OR:	Attempt division by $x^2 + ax + 1$ or $x^2 - ax - 1$, and obta Obtain $a^2 = 9$ and either $a^3 - 1$ la + 6 = 0 or $a^3 - 7a - 6$ State answer $a = 3$ only	in an equat = 0, or equ	ion in <i>a</i> M1 ivalent A1 A1
		[Special case: the answer $a = 3$, obtained by trial and inspection, or with no working earns B2.]	d error, or b	y [3]
(ii)	Substitute for a and attempt to find zeroes of one of t	he quadrat	ic factorsM1
		Obtain one correct answer State all four solutions $\frac{1}{2}(-3 \pm \sqrt{5})$ and $\frac{1}{2}(3 \pm \sqrt{13})$,	or equivale	A1 nt A1
			or oquivalo	
				[3]
3 (i)	State or imply indefinite integral of e^{2x} is $\frac{1}{2}e^{2x}$, or equivalent substitute correct limits correctly Obtain answer $R = \frac{1}{2}e^{2p} - \frac{1}{2}$, or equivalent	ivalent	B1 M1 A1
				[3]
(i	i)	Substitute $R = 5$ and use logarithmic method to obtain $2p$ Solve for p Obtain answer $p = 1.2$ (1.1989)	n an equati	M1* M1 (dep*) A1
				[3]

Page 2		yllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	2
4 (i)	Use tan ($A \pm B$) formula to obtain an equation in tan x State equation $\frac{\tan x + 1}{1 - \tan x} = 4 \frac{(1 - \tan x)}{1 + \tan x}$, or equivalent Transform to a 2- or 3-term guadratic equation		M1 A1 M1
	Obtain given answer correctly		A1
			[4]
(ii)	Solve the quadratic and calculate one angle, or establis $t = \frac{1}{3}$, 3 (only) Obtain one answer, e.g. $x = 18.4^{\circ} \pm 0.1^{\circ}$	sh that	M1 A1
	Obtain second answer $x = 71.6^{\circ}$ and no others in the ra	inge	A1
	[Ignore answers outside the given range]		[3]
5 (i)	Make recognizable sketch over the given range of two	suitable	
	graphs, e.g. $y = 1n x$ and $y = 2 - x^2$ State or imply link between intersections and roots and	diuctify	B1+B1
	given answer	u justity	B1
			[3]
(ii)	Consider sign of In x - $(2 - x^2)$ at x = 1 and x = 1.4, or e	auivalent	
(1)	Complete the argument correctly with appropriate calc		A1
			[2]
(iii)	Use the given iterative formula correctly with $1 \le x_n \le 1$	1.4	M1
()	Obtain final answer 1.31		A1
	Show sufficient iterations to justify its accuracy to 2d.p or show there is a sign change in the interval (1.305, 1		A1
			[3]
6 (i)	Attempt to apply the chain or quotient rule		M1
	Obtain derivative of the form $\frac{k \sec^2 x}{(1 + \tan x)^2}$ or equivalent		A1
	Obtain correct derivative $-\frac{\sec^2 x}{(1 + \tan x)^2}$ or equivalent		A1
	Explain why derivative, and hence gradient of the curv always negative	re, is	A1
			[4]
(!!)			
(ii)	State or imply correct ordinates: 1, 0.7071, 0.5 Use correct formula, or equivalent, with $h = \frac{1}{8\pi}$ and th	ree ordina	B1 ates M1
	Obtain answer 0.57 (0.57220) \pm 0.01 (accept 0		A1
			[3]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	2

(iii)	Justify the statement that the rule gives an over-estimate	
-------	--	--

B1

[1]

7 (i) State
$$\frac{dx}{d\theta} = 2 - 2\cos 2\theta$$
 or $\frac{dy}{d\theta} = 2\sin 2\theta$ B1

Use
$$\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$$
 M1

Obtain answer
$$\frac{dy}{dx} = \frac{2\sin 2\theta}{2 - 2\cos 2\theta}$$
 or equivalent A1

[5]

(ii)	Substitute $\theta = \frac{1}{4}\pi$ in $\frac{dy}{dx}$ and both parametric equations	M1
	Obtain $\frac{dy}{dx} = 1, x = \frac{1}{2}\pi - 1, y = 2$	A1

Obtain equation
$$y = x + 1.43$$
, or any exact equivalent A1 $\sqrt{}$

[3]

(iii)	State or imply that tangent is horizontal when $\theta = \frac{1}{2}\pi$ or $\frac{3}{2}\pi$	B1
	Obtain a correct pair of x, y or x- or y-coordinates	B1
	State correct answers (π , 3) and (3 π , 3)	B1

[3]

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS AND HIGHER MATHEMATICS Paper 3 (Pure 3)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

1	(i)	Use trig formulae to express LHS in terms of sin x and cos x	M1
		Use $\cos 60^\circ = \sin 30^\circ$ to reduce equation to given form $\cos x = k$	M1

[2]

(ii) State or imply that
$$k = -\frac{1}{\sqrt{3}}$$
 (accept -0.577 or -0.58) A1
Obtain answer x = 125.3° only A1
[Answer must be in degrees; ignore answers outside the given range.]
[SR: if $k = \frac{1}{\sqrt{3}}$ is followed by $x = 54.7^\circ$, give A0A1 $\sqrt{.}$]
[2]

2	State first step of the form $kxe^{2x} \pm \int ke^{2x} dx$	M1
	Complete the first step correctly	A1
	Substitute limits correctly having attempted the further integration of ke^{2x} Obtain answer $\frac{1}{4}(e^2 + 1)$ or exact equivalent of the form $ae^2 + b$,	M1
	having used $e^0 = 1$ throughout	A1

[4]

3 EITHER	State or imply non-modular inequality $(x - 2)^2 < (3 - 2x)^2$, or corresponding equation Expand and make a reasonable solution attempt at a 2- or 3-term quadratic, or equivalent Obtain critical value $x = 1$ State answer $x < 1$ only	B1 M1 A1 A1
OR	State the relevant linear equation for a critical value, i.e. $2 - x = 3 - 2x$, or equivalent Obtain critical value $x = 1$ State answer $x < 1$ State or imply by omission that no other answer exists	B1 B1 B1 B1
OR	Obtain the critical value $x = 1$ from a graphical method, or by inspector by solving a linear inequality State answer $x < 1$ State or imply by omission that no other answer exists	B2 B1 B1
		[4]

Page 2	Mark Scheme Syllabus Pape	er
	A AND AS LEVEL – JUNE 2003 9709/8719 3	
4 (i) EITHER	State or imply that $x - 2$ is a factor of $f(x)$ Substitute 2 for x and equate to zero Obtain answer $a = 8$	B1 M1 A1
	[The statement $(x - 2)^2 = x^2 - 4x + 4$ earns B1.]	
OR	Commence division by $x^2 - 4x + 4$ and obtain partial quotient $x^2 + 2x$ Complete the division and equate the remainder to zero Obtain answer $a = 8$	B1 M1 A1
OR	Commence inspection and obtain unknown factor $x^2 + 2x + c$ Obtain $4c = a$ and an equation in c Obtain answer $a = 8$	B1 M1 A1
		[3]
(ii) EITHER	Substitute <i>a</i> = 8 and find other factor $x^2 + 2x + 2$ by inspection or division State that $x^2 - 4x + 4 \ge 0$ for all <i>x</i> (condone > for \ge) Attempt to establish sign of the other factor Show that $x^2 + 2x + 2 > 0$ for all <i>x</i> and complete the proof [An attempt to find the zeros of the other factor earns M1.]	B1 B1 M1 A1
OR	Equate derivative to zero and attempt to solve for <i>x</i> Obtain $x = -\frac{1}{2}$ and 2 Show correctly that $f(x)$ has a minimum at each of these values Having also obtained and considered $x = 0$, complete the proof	M1 A1 A1 A1
		[4]
5 (i)	State or imply $w = \cos \frac{2}{3} \pi + i \sin \frac{2}{3} \pi$ (allow decimals) Obtain answer $uw = -\sqrt{3} - i$ (allow decimals)	B1 B1√
	Multiply numerator and denominator of $\frac{u}{w}$ by -1 - i $\sqrt{3}$, or equivalent	M1
	Obtain answer $\frac{u}{w} = \sqrt{3}$ - i (allow decimals)	A1
		[4]
(ii)	Show U on an Argand diagram correctly Show <i>A</i> and <i>B</i> in relatively correct positions	B1 B1√
		[2]
(iii)	Prove that $AB = UA$ (or UB), or prove that angle $AUB =$ angle ABU (or angle BAU) or prove, for example, that $AO = OB$ and angle $AOB = 120^{\circ}$, or prove that one angle of triangle UAB equals 60° Complete a proof that triangle UAB is equilateral	B1 B1

[2]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

6 (i) EITHER	State or imply $f(x) \equiv \frac{A}{2x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$	B1
	State or obtain $A = 1$ State or obtain $C = 8$ Use any relevant method to find B Obtain value $B = 4$	B1 B1 M1 A1
OR	State or imply $f(x) \equiv \frac{A}{2x+1} + \frac{Dx + E}{(x-2)^2}$ State or obtain $A = 1$ Use any relevant method to find D or E Obtain value $D = 4$ Obtain value $E = 0$	B1 B1 M1 A1 A1
		[5]

(ii) EITHER Use correct method to obtain the first two terms of the expansion of $(1 + 2x)^{-1}$ or $(x - 2)^{-1}$ or $(x - 2)^{-2}$ or $(1 - \frac{1}{2}x)^{-1}$ or $(1 - \frac{1}{2}x)^{-2}$ M1 Obtain any correct sum of unsimplified expansions up to the terms in x^2 (deduct A1 for each incorrect expansion) A2 $\sqrt{A1}$

[Unexpanded binomial coefficients involving -1 or -2, e.g. $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are not

sufficient for the M1.]

[f.t. is on A, B, C, D, E.]

[Apply this scheme to attempts to expand $(9x^2 + 4)(1+2x)^{-1}(x - 2)^{-2}$, giving M1A2 for a correct product of expansions and A1 for multiplying out and reaching the given answer correctly.]

[Allow attempts to multiply out $(1 + 2x)(x - 2)^2 (1 - x + 5x^2)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^2 , M1 for attempting to multiply out as far as terms in x^2 , A1 for a correct expansion, and A1 for obtaining $9x^2 + 4$ correctly.]

[SR: *B* or *C* omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain *A*, *B*, or *C*, but no further marks. In part (ii) only the M1 and A1 $\sqrt{}$ for an unsimplified sum are available.]

[SR: *E* omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain *A* or *D*, but no further marks. In part (ii) award M1A2 $\sqrt{A1}$ as in the scheme.]

OR	Differentiate and evaluate f(0) and f'(0)	M1
	Obtain $f(0) = 1$ and $f'(0) = -1$	A1
	Differentiate and obtain $f''(0) = 10$	A1
	Form the Maclaurin expansion and obtain the given answer correctly	A1

	Page 4	Mark Scheme Syllabus	Paper
	T age +	A AND AS LEVEL – JUNE 2003 9709/8719	3
7	(i)	State or imply that $\frac{dx}{dt} = k (100 - x)$	B1
		Justify $k = 0.02$	B1
			[2]
	(ii)	Separate variables and attempt to integrate $\frac{1}{100-x}$	M1
		Obtain term – In (100 - x), or equivalent	A1
		Obtain term $0.02t$, or equivalent	A1 M1
		Use $x = 5$, $t = 0$ to evaluate a constant, or as limits Obtain correct answer in any form, e.g. $-\ln(100 - x) = 0.02t - \ln 9$	
		Rearrange to give <i>x</i> in terms of <i>t</i> in any correct form, e.g. <i>x</i> = 100 - 95exp(-0.02 <i>t</i>)	A1
			[6]
		[SR: In (100 - x) for -In (100 - x). If no other error and $x = 100 - 9$ equivalent obtained, give M1A0A1M1A0A1 $$]	95exp(0.02 <i>t</i>) or
	(iii)	State that x tends to 100 as t becomes very large	B1
			[1]
8	(i)	State derivative $\frac{1}{x} - \frac{2}{x^2}$, or equivalent	B1
		Equate 2-term derivative to zero and attempt to solve for x Obtain coordinates of stationary point (2, ln 2 +1), or equivalent Determine by any method that it is a minimum point,	M1 A1+A1
		with no incorrect work seen	A1
			[5]
	(ii)	State or imply the equation $\alpha = \frac{2}{3 - \ln \alpha}$	B1
		Rearrange this as 3 = In α + $\frac{2}{\alpha}$ (or <i>vice versa</i>)	B1
		lpha	[2]
	(iii)	Use the iterative formula correctly at least once	M1
		Obtain final answer 0.56	A1
		Show sufficient iterations to justify its accuracy to 2 d.p., or show there is a sign change in the interval (0.555, 0.565)	N A1
			[3]
9	(i)	State or imply a correct normal vector to either plane,	
		e.g. i + 2 j - 2 k or 2 i - 3 j + 6 k Carry out correct process for evaluating the scalar product of both	B1
		the normal vectors	M1
		Using the correct process for the moduli, divide the scalar produc	
		of the two normals by the product of their moduli and evaluate the inverse cosine of the result	e M1
		Obtain answer 40.4° (or 40.3°) or 0.705 (or 0.704) radians	A1
		[Allow the obtuse answer 139.6° or 2.44 radians]	[/]
			[4]

Page 5		per
	A AND AS LEVEL – JUNE 2003 9709/8719	3
(ii) EITHER	Carry out a complete strategy for finding a point on l Obtain such a point e.g. (0, 3, 2)	M1 A1
	<i>EITHER</i> Set up two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ of l , e.g. $a + 2b - 2c = 0$ and $2a - 3b + 6c = 0$ Solve for one ratio, e.g. $a:b$ Obtain $a:b:c = 6: -10: -7$, or equivalent State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda$ (6 $\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$)	B1 M1 A1 A1√
	ORObtain a second point on l , e.g. (6, -7, -5)Subtract position vectors to obtain a direction vector for l Obtain 6i - 10j - 7k, or equivalent	A1 M1 A1
	State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda$ (6 $\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$) <i>OR</i> Attempt to find the vector product of the two normal vectors Obtain two correct components Obtain 6 $\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda$ (6 $\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$)	A1√ s M1 A1 A1 A1√
OR	Express one variable in terms of a second Obtain a correct simplified expression, e.g. $x = (9 - 3y)/5$ Express the same variable in terms of the third and form a three term equation	M1 A1 M1
	Incorporate a correct simplified expression, e.g. $x = (12 - 6z)/7$ in this equation Form a vector equation for the line $\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	A1 M1
	State a correct answer, e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ -5/3 \\ -7/6 \end{pmatrix} \lambda$, or equivalent	A1√
OR	Express one variable in terms of a second Obtain a correct simplified expression, e.g. $y = (9 - 5x)/3$ Express the third variable in terms of the second Obtain a correct simplified expression, e.g. $z = (12 - 7x)/6$ Form a vector equation for the line $\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	M1 A1 M1 A1 M1
	State a correct answer, e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -5/3 \\ -7/6 \end{pmatrix}$, or equivalent	A1√
		[6]
10 (i) EITHER	Make relevant use of the correct sin 2A formula Make relevant use of the correct cos 2A formula Derive the given result correctly	M1 M1 A1
OR	Make relevant use of the tan 2A formula Make relevant use of 1 + $\tan^2 A = \sec^2 A$ or $\cos^2 A + \sin^2 A = 1$ Derive the given result correctly	M1 M1 A1
		[3]

Page 6	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3
(ii)	State or imply indefinite integral is ln sin x , or equ	iivalent	B1
('')	Substitute correct limits correctly		M1
	Obtain given exact answer correctly		A1
			l
(iii) EITHE	ER State indefinite integral of $\cos 2x$ is of the form k	In sin 2x	M1
. ,	State correct integral $\frac{1}{2}$ In sin 2x		A1
	Substitute limits correctly throughout		M1
	Obtain answer ¼ 1n 3, or equivalent		A1
OR	State or obtain indefinite integral of cosec 2x is c	of the form k In	tan <i>x</i> ,
	or equivalent		M1
	State correct integral $\frac{1}{2}$ In tan x, or equivalent		A1
	Substitute limits correctly		M1
	Obtain answer ¼ In 3, or equivalent		A1

CAMBRIDGE

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS Paper 4 (Mechanics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

Mechanics 1

1	(i)	Tension is 8000 N or 800 <i>g</i>	B1	1
•	(1)	Accept 7840 N (from 9.8) or 7850 (from 9.81)		'
	(ii)	For using $P = \frac{\Delta W}{\Delta t}$ or $P = Tv$	M1	
		$\Delta W = 8000 \times 20 \text{ or } v = \frac{20}{50}$	A1 ft	
		Power applied is 3200 W Accept 3140 W (from 9.8 or 9.81)	A1	3
		SR (for candidates who omit g)(Max 2 out of 3)P = $800 \times 20 \div 50$ B1Power applied is 320 WB1		
2	(i) (a)	For resolving in the direction <i>PQ</i>	M1	
		Component is 2 x $10\cos 30^{\circ} - 6\cos 60^{\circ}$ or 14.3 N or $10\sqrt{3} - 3$ N	A1	2
	(b)	Component is $\pm 6\cos 30^{\circ} - 6\cos 60^{\circ}$ or ± 5.20 N or $\pm 3\sqrt{3}$ N	B1	1
		SR (for candidates who resolve parallel to and perpendicular to the force of magnitude 6 N) (Max 2 out of 3)For resolving in both directionsM1For $X = 6 - 10\cos 30^\circ$ or -2.66 N and $Y = 10 + 10\sin 30^\circ$ or 15 NA1SR (for candidates who give a combined answer for (a) and (b))(Max 2 out of 3)For resolving in both directionsM1For ($6\cos 30^\circ$)i + ($2 \times 10\cos 30^\circ - 6\cos 60^\circ$)j or any vector equivalentA1		
	(ii)	For using Magnitude = $\sqrt{ans(i)^2 + ans(ii)^2}$	M1	
		Magnitude is 15.2 N ft only following sin/cos mix and for answer 5.66 N	A1 ft	2
3	(i)	Region under $v = 2t$ from $t = 0$ to $t = T$ indicated	B1	1
	(ii)	For attempting to set up and solve an equation using area $\Delta = 16$ or for using $s = \frac{1}{2} 2t^2$	M1	
		For $16 = \frac{1}{2} 2T^2$	A1	
		T = 4	A1	3
		SR (for candidates who find the height of the Δ but donot score M1)(Max 1 out of 3)For $h/T = 2$ or $h = 2T$ or $v = 8$ B1		

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

Γ

	(iii)	For using distance = $10 \times ans$ (ii) or for using the idea that the distance is represented by the area of the relevant parallelogram or by the area of the trapezium (with parallel sides 9 and 4 and height 10) minus the area of the triangle (with base 5 and height 10)	M1	
		Distance is 40m	A1 ft	2
4	(i)	For differentiating <i>x</i>	M1	
		$\dot{x} = t + \frac{1}{10}t^2$	A1	
		Speed is 20 ms ⁻¹	A1	3
	(ii)	$\ddot{x} = 1 + \frac{1}{5}t$	B1 ft	
		For attempting to solve $\ddot{x}(t) = 2\ddot{x}(0)$ $(1 + \frac{1}{5}t = 2)$	M1	
		<i>t</i> = 5	A1	3
5	(i)	For resolving forces on any two of <i>A</i> , or <i>B</i> , or <i>A</i> and <i>B</i> combined $(T_1 = W_A + T_2, T_2 = W_B, T_1 = W_A + W_B)$	M1	
		Tension in S_1 is 4 N or Tension in S_2 is 2 N Accept 0.4 <i>g</i> or 3.92 (from 9.8 or 9.81) for T_1 Tension in S_2 is 2 N or Tension in S_1 is 4 N Accept 0.2 <i>g</i> or 1.96 (from 9.8 or 9.81) for T_2	B1 A1	3
		SR (for candidates who omit g)(Max 1 out of 3) $T_1 = 0.4$ and $T_2 = 0.2$ B1		
	(ii)	For applying Newton's second law to <i>A</i> , or to <i>B</i> , or to <i>A</i> and <i>B</i> combined	M1	
		For any one of the equations $T + 2 - 0.4 = 0.2a$, 2 - T - 0.2 = 0.2a, 4 - 0.4 - 0.2 = 0.4a	A1	
		For a second of the above equations	A1	
		For solving the simultaneous equations for <i>a</i> and <i>T</i>	M1	
		Acceleration is 8.5 ms ⁻² , tension is 0.1 N Accept 8.3 from 9.8 or 8.31 from 9.81 SR (for candidates who obtain only the 'combined' equation) (Max 3 out of 5) For applying Newton's second law to <i>A</i> and <i>B</i> combined M1	A1	5
		For $4 - 0.4 - 0.2 = 0.4a$ A1		
		Acceleration is 8.5 ms^{-2} A1	L	

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

6	(i)	For using $F = \mu R$ and $R = mg$ $(F = 0.025 \times 0.15 \times 10)$	M1	
		Frictional force is 0.0375 N or 3/80 N Accept 0.0368 from 9.8 or 9.81	A1	2
	(ii)	For using <i>F</i> = <i>ma</i> (-0.0375 = 0.15a) or <i>d</i> = μg	M1	
		Deceleration is 0.25 ms ⁻² (or $a = -0.25$) A.G.	A1	2
	(iii)	For using $s = ut + \frac{1}{2}at^2$ $(s = 5.5 \times 4 + \frac{1}{2}(-0.25)16)$	M1	
		Distance <i>AB</i> is 20m	A1	2
	(iv)	For using $v^2 = u^2 + 2as$ ($v^2 = 3.5^2 - 2 \times 0.25 \times 20$)	M1	
		Speed is 1.5 ms ⁻¹ (ft $\sqrt{(24.5 - (iii))/2}$)	A1 ft	2
	(v)	Return dist. = $\frac{3.5^2}{2 \times 0.25}$ or distance beyond $A = \frac{(iv)^2}{2 \times 0.25}$	M1	
		Total distance is 44.5 m (ft 24.5 + (iii) or 2((iv) ² + (iii))	A1 ft	2
7	(i)	PE gain = $mg(2.5sin60^\circ)$	B1	
		For using KE = $\frac{1}{2} mv^2$	M1	
		For using the principle of conservation of energy $(\frac{1}{2}m8^2 - \frac{1}{2}mv^2 = mg(2.5sin60^\circ))$	M1	
		Alternative for the above 3 marks:		
		For using Newton's Second Law or stating $a = -g \sin 60^{\circ}$	M1*	
		a = -8.66 (may be implied)	A1	
		For using $v^2 = u^2 + 2as$ $(v^2 = 64 - 2 \times 8.66 \times 2.5)$	M1dep*	
		Speed is 4.55 ms ⁻¹ Accept 4.64 from 9.8 or 9.81	A1	4
	(ii)	For using $\frac{1}{2} mu^2$ (>) $mg h_{max}$ ($\frac{1}{2} 8^2 > 10 h_{max}$)	M1	
		For obtaining 3.2m A.G.	A1	2
	(iii)	Energy is conserved or absence of friction or curve <i>BC</i> is smooth (or equivalent) and <i>B</i> and <i>C</i> are at the same height or the PE is the same at <i>A</i> and <i>B</i> (or equivalent)	B1	1

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

(iv)	WD against friction is 1.4×5.2	B1	
	For WD = KE loss (or equivalent) used	M1	
	$1.4 \times 5.2 = \frac{1}{2} 0.4(8^2 - v^2)$ or		
	$1.4 \times 5.2 = \frac{1}{2} 0.4((i)^2 - v^2) + 0.4 \times 10(2.5 \sin 60^\circ)$	A1	
	(12.8 or 4.14 + 8.66)		
	Alternative for the above 3 marks: For using Newton's Second Law	M1*	
	$0.4g(2.5\sin 60^{\circ} \div 5.2) - 1.4 = 0.4a \qquad (a = 0.6636)$ For using $v^2 = u^2 + 2as$ with $u \neq 0$	A1	
	$(v^2 = 4.55^2 + 2 \times 0.6636 \times 5.2)$	M1dep*	
	Speed is 5.25 ms ⁻¹	A1	4

CAMBRIDGE

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

	Page 1		Mark Scheme	Syllabus	Paper
			A AND AS LEVEL – JUNE 2003	9709/8719	5
			Mechanics 2		
1		Th	e distance from the centre to the rod is $\sqrt{25^2 - 24^2}$		B1
			r taking moments about the centre of the ring or about		
			e mid-point of the rod, or C.O.M. of frame prrect number of terms required in equation)		M1
		(1.	$(5 + 0.6)\overline{x} = 0.6 \times 7 \text{ or } (1.5 + 0.6)(7 - \overline{x}) = 1.5 \times 7$		
		•	$5\bar{x} = 0.6(7 - \bar{x})$		A1
			stance is 2cm		A1
		SR	Allow M1 for 48.7 = $(50 \pi + 48) x$		
					4
2	(i)	00	Q = 4 tan 20° (=1.456)		B1
		00	G = 1.5		B1
		Gı	not between O and Q (all calculations correct)		B1
					3
	(ii)	He	misphere does not fall on to its plane face		*B1 ft
			cause the moment about <i>P</i> is clockwise or e centre of mass is to right of <i>P</i> Q		(dep)* B1 ft
					(dop) D I II 2
					2
3	(i)		pe is at 30° to wall, or beam is at 0° to the horizontal a correct trig. ratio used		B1
			r taking moments about <i>A</i> or r taking moments about <i>P</i> and resolving horizontally		M1
			5 <i>T</i> = 45 <i>g</i> x 3cos 30° or <i>I</i> = 45 <i>g</i> x 3cos 30° and <i>H</i> = <i>T</i> sin30°		A1 ft
		Те	nsion is 468 N		A1
					4
	(ii)	Ho	rizontal component is 234 N (ft ½ <i>T</i>)		B1 ft
		Fo	r resolving forces vertically ($V = 45g - T\cos 30^\circ$)		M1
			ignitude of vertical component is 45 N	nalo) M44 M	A1 ft
		эĸ	t angle incorrect (i) B0, M1, A1 ft A0, (ii) B1 ft (<i>T</i> <u>and</u> a	ngie), wrt, A	3

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	5

4	(i)	For using Newton's second law with $a = v \frac{dv}{dx}$	M1
		$-\frac{1}{3v} = 0.2v \frac{dv}{dx}$	A1
		$3v^2 \frac{dv}{dx} = -5$ from correct working	A1
			3
	(ii)	For separating the variables and attempting to integrate	M1
		$v^3 = (A) - 5x$	A1
		For using $x = 0$ and $v = 4$ to find A, and then substituting $x = 7.4$ (or equivalent using limits)	M1
		<i>v</i> = 3	A1
			4
5	(i)	For resolving forces vertically (3 term equation)	M1
		$T\cos 60^{\circ} + 0.5 \times 10 = 8$	A1
		Tension is 6 N	A1
			3
	(ii)	Radius of circle is 9sin60° (7.7942)	B1
		For using Newton's second law horizontally with $a = \frac{v^2}{r}$	M1
		$6\sin 60^{\circ} = 0.5 \frac{v^2}{(9\sin 60^{\circ})}$	A1 ft
		Alternative for the above 2 marks:	
		For using Newton's second law perpendicular to the string with a = $\frac{v^2}{r}$	M1
		$(8 - 0.5 \times 10)\sin 60^\circ = 0.5 \frac{v^2}{(9\sin 60^\circ)}\cos 60^\circ$	A1 ft
		Speed is 9 ms ⁻¹	A1
			4
		NB Use of $mr\omega^2$, the M1 is withheld until $v = r\omega$ is used SR Lift perpendicular to the string: (i) $8\sin60^\circ = 0.5g + T\cos60^\circ \rightarrow T = 3.86$: M1, A1, A1 (-1 MR) (2 out of 3 m	nax);
		$0.5v^2$	

(ii) 3.86sin60° + 8cos60° = $\frac{0.5v^2}{9\sin 60^\circ}$: B1, M1, A1√, A1 (-1 MR) (3 out of 4 max) ⇒ <u>10</u>.7

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	5

6 (i) For using
$$y = \dot{y}_0 t - \frac{1}{2} g t^2$$
 with $y = 0$ and $t = 10$ or
 $\dot{y} = \dot{y}_0 - gt$ with $\dot{y} = 0$ and $t = 5$ M1

$$0 = 60\sin\alpha \times 10 - \frac{1}{2} \times 10 \times 10^{2} \text{ or } 0 = 60\sin\alpha - 10 \times 5$$

 $\alpha = 56.4^{\circ}$

A1

(ii) For substituting t = 5 into $y = \dot{y}_0 t - \frac{1}{2} g t^2$ or $\dot{y} = 0$ into $\dot{y}^2 = \dot{y}_0^2 - 2gy$ or $\dot{y} = 0$ and t = 5 into $y = \frac{\dot{y}_0 + \dot{y}}{2} t$ M1

Greatest height is 125m

2

4

A1

(iii) $\dot{y} = 60\sin\alpha - gT$ B1

 $\dot{x} = 60\cos \alpha$ B1

For attempting to solve $\dot{x} = \dot{y}$, or a complete method M1 for an equation in *T* using $\dot{x} = \dot{y}$

NB. Use of \dot{y}_0 = 60 in (i) and (ii) is M0

	Page 4	Mark Scheme	Syllabus	Paper
		A AND AS LEVEL – JUNE 2003	9709/8719	5
,	(i) Fo	or using $T = \frac{\lambda x}{L}$ $(\frac{130 \times 3}{10} \text{ or } \frac{130 \times 1.5}{5})$		M1
	Τe	ension is 39 N		A1
	(ii) Fo	or resolving forces vertically (mg = 2 x 39 x $\frac{5}{13}$)		M1
	М	ass is 3kg		A1
	(iii) E>	xtension = 20 - 10 (or 10 - 5)		B1
	(L	or using EPE = $\frac{\lambda x^2}{2L}$ must be 10 or 5; must be attempt at extension, e.g = 8 - 2.5 is M0)	. <i>x</i> = 20 or	
	(E	PE = $\frac{130 \times 10^2}{2 \times 10}$ or EPE = 2 x $\frac{130 \times 5^2}{2 \times 5}$]		
	(A	llow M1 only for $x = 2$ or 3)		M1
	EF	PE is 650 J (ft attempted extension in lowest position)	1	A1
	(iv) Cl	nange in GPE = 3 x 10 x 8		B1
		or using the principle of conservation of energy with E, GPE and EPE all represented		M1
		130×2^2		

$$650 = \frac{1}{2}3v^2 + 3 \times 10 \times 8 + \frac{130 \times 2^2}{2 \times 10}$$
 A1 ft

Speed is 16 ms⁻¹

A1

4

CAMBRIDGE

June 2003

GCE A AND AS LEVEL AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS Paper 6 (Probability and Statistics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/0390	6

Γ

1	(i)	False zero		B1	1	Or any sensible answer
	(ii)	(a) Stem 3 4 5 6 7 8 9	Leaf 45 145 02 2 339 344556679 1	B1 B1		For correct stem, i.e. not 30, 40, 50 etc. For correct leaf, must be sorted
		Key 3 4 re width = 10	p 34, or stem	B1	3	For key, NB 30 4 rep 34 gets B1 here
		(b) 79		B1 ft	1	For correct answer, only ft from a sorted stem and leaf diagram
2	(i)	$P(N, \overline{N}) =$	$\frac{3}{10} \times \frac{7}{9}$	M1		For multiplying 2 relevant possibilities
		Mult. By 2 =		A1	2	For obtaining given answer legitimately
		Total 1	vays ₁₀ C ₂ (= 45) of each C ₁ x ₃ C ₁ (= 21)	M1		For both totals
			= 21/45 = 7/15 AG	A1	2	For obtaining correct answer
	(ii)	P (<i>N</i> , <i>N</i>) – 3	3/10 x 2/9 (= 1/15)	M1		For 2 correct numbers multiplied together, can be implied
		$P(\overline{N}, \overline{N})$ =	= 7/10 x 6/9 (= 7/15)	M1		For 2 correct numbers multiplied together or subtracting from 1
		x P (X=x) 7	<u>0 1 2</u> 7/15 7/15 7/15	B1	3	All correct. Table correct and no working gets 3/3
	(iii)	E(X) = 1 x 7	7/15 + 2 x 1/15 = 3/5	B1 ft	1	For correct answer or equivalent. Only ft if $\sum p = 1$
3	(i)	P(X > 120)	(120 - 112)			
		= 1 -	$\Phi\left(\frac{120-112}{17.2}\right)$	M1		For standardising with or without the $\sqrt{12}$, 17.2 ² , but no cc.
		= 1 -	Φ (0.4651)	M1		For finding the correct area, 1 – their Φ (z), NOT Φ (1 – their z(0.4651))
		= 1 -	0.6790 = 0.321	A1	3	For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/0390	6

	(ii)	<i>z</i> = -0.842	B1	For z, ±0.842 or ±0.84
	(")	$-0.842 = \frac{103 - 115}{\sigma}$	M1	For solving an equation involving their
		0		<i>z</i> or <i>z</i> = 0.7881 or 0.5793 only, 103, 115 and σ or $\sqrt{\sigma}$ or σ^2 , i.e. must
				have used tables
		<i>σ</i> = 14.3	A1 :	3 For correct answer
4	(i)	$(0.7)^{24} \times (0.3)^6 \times {}_{30}C_{24}$	M1	For relevant binomial calculation
		= 0.0829	A1 2	2 For correct answer
		OR normal approx.		
		$P(24) = \Phi ((24.5 - 21)/\sqrt{6.3})) - \Phi ((23.5 - 21)/\sqrt{6.3}))$	M1	For subtracting the 2 phi values as
		$-\Psi((25.5-21)/(0.5))$		For subtracting the 2 phi values as written
		= 0.9183 - 0.8404 = 0.0779	A1 2	2 For correct answer
	(ii)	$\mu = 30 \times 0.7 = 21,$		5 04 100
		$\sigma^2 = 30 \times 0.7 \times 0.3 = 6.3$	B1	For 21 and 6.3 seen
		$P(=20) = \Phi(19.5 - 21)$	M1	For standardising process, must have
		$P(<20) = \Phi\left(\frac{19.5 - 21}{\sqrt{6.3}}\right) =$		$\sqrt{1000}$ standardising process, must have $\sqrt{1000}$, can be + or –
		Φ (-0.5976)	M1 M1	For continuity correction 19.5 or 20.5 For using 1 - some area found from
				tables
		= 1 - 0.7251 = 0.275	A1 .	5 For correct answer
5	(i)	$_{6}C_{3} \times _{4}C_{2} = 120$	M1	For multiplying 2 combinations
				together, not adding, no perms, ${}_{10}C_3 \times {}_{10}C_2 \text{ or } {}_{5}C_3 \times {}_{5}C_2 \text{ would get M1}$
			A1 2	2 For answer 120
	(ii)	₆ C ₄ x ₄ C ₁ (= 60)	M1	For reasonable attempt on option 4M
				1W, or 5M, 0W, can have + here and perms
		$_{6}C_{5} \times _{4}C_{0} (= 6)$	M1	For other option attempt
		Answer = 186	A1 :	3 For correct answer
<u> </u>	(iii)	Man and woman both on	M1	For finding number of ways of the
		₅ C ₂ x ₃ C ₁ (= 30)		man and woman being on together, need not be evaluated but must be
				multiplied
		120 - 30 = 90	M1	For subtracting a relevant number
				from their (i)
			A1 :	3 For correct answer
L				

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/0390	6

			1	
		OR ${}_{5}C_{2} \ge {}_{3}C_{2} = 30$	M1	Any 2 of man in, woman out
1		$_{3}C_{1} \times _{5}C_{3} (= 30)$	M1	Woman in, man out
1		$_{5}C_{3} \times _{3}C_{2} (= 30)$		Neither in
		$\Sigma = 90$	A1 3	
		OR $_{3}C_{1} \times _{5}C_{3} (= 30)$	M1	Woman in, man out
		$_{3}C_{2} \times _{6}C_{3} (= 60)$	M1	Woman out, any man
			A1 3	For correct answer
		$\Sigma = 90$	3	
		OR ${}_{5}C_{2} \times {}_{3}C_{2} (= 30)$	M1	Man in, woman out
		$_{5}C_{3} \times _{4}C_{2} (= 60)$	M1	Man out, any woman
		$\Sigma = 90$	A1 3	For correct answer
6	(i)	P(G) = number of	M1	For appreciating total g'parents/total
		g'parents/total people		people, can be implied
		= 6/16 = 3/8	A1 2	For correct answer
			_	
	(ii)	P(H1, G) + P(H2, G) + P(H3, G)	B1	For any correct 2-factor product, need
1	()			not be evaluated
1		1 2 1 3 1 1 17		
1		$=\frac{1}{3}\times\frac{2}{7}+\frac{1}{3}\times\frac{3}{7}+\frac{1}{3}\times\frac{1}{2}=\frac{17}{42}$		
		(= 0.405)	M1	For addition of 3 relevant 2-factor
1				products
			A1 3	For correct answer or equivalent
	(iii)	P(H1 G) + P(H2 G)	M1	For summing exactly 2 probability
	(iii)		M1	For summing exactly 2 probability options
	(iii)			options
	(iii)		M1 M1	options For dividing by answer to (ii) , only if
	(iii)	$P(H1 G) + P(H2 G)$ $= \frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$		options For dividing by answer to (ii) , only if not multiplied as well, and p must be
	(iii)		M1	options For dividing by answer to (ii) , only if not multiplied as well, and p must be < 1
	(iii)		M1 A1	options For dividing by answer to (ii) , only if not multiplied as well, and p must be < 1 For one correct probability
	(iii)		M1 A1	options For dividing by answer to (ii) , only if not multiplied as well, and p must be < 1
	(iii)	$=\frac{2/21}{17/42}+\frac{3/21}{17/42}=\frac{10}{17}$	M1 A1 A1 4	options For dividing by answer to (ii) , only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent
	(iii)	$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17	M1 A1 A1 4 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents
	(iii)	$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17	M1 A1 A1 4 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1
	(iii)	$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17	M1 A1 A1 4 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents
		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17	M1 A1 A1 4 M1 M1 A2	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer
7	(iii) (i)	$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17	M1 A1 A1 4 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17	M1 A1 A1 4 M1 M1 A2	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths)
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17	M1 A1 A1 4 M1 A2 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths)
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 +	M1 A1 A1 4 M1 A2 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths)
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 +	M1 A1 A1 4 M1 A2 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg
7		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$ OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17 Mean = (2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 +	M1 A1 A1 4 M1 A2 M1 M1 M1	options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer For using their mid-intervals (not end points or class widths) For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/0390	6

	sd = $\sqrt{(2.5^2 \times 11 + 7.5^2 \times 20 + 15^2 \times 32 + 25^2 \times 18 + 35^2 \times 10 + 55^2 \times 6)/97 - mean^2)} = 13.3$	M1 A1 5	For using $\frac{\sum fx^2}{\sum f}$ - (their mean) ² or equivalent, no $$ needed, not $(\sum fx)^2 / \sum f$ For correct answer
(ii)	Freq. densities: 2.2, 4.0, 3.2, 1.8, 1.0, 0.2	M1	For attempting a frequency density of some sort (or scaled frequency), can be upside down but not multiplied
	freq:	A1	For correct heights on the graph
		B1	For correct bars on uniform horiz. scale, i.e. from 0 to 5 etc.
	10 20 30 40 50 60 70 time in mins	B1 4	Freq. density or scaled freq. labelled on vertical axis, time or mins on horiz., 'class width' is not enough

CAMBRIDGE

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	7

1 (i) 2.5 1.25	B1 B1	2 For correct mean. For correct variance
(ii) 5 5	B1ft B1ft	2 For correct mean. For correct
		variance
2 $H_0: p = 0.6$ $H_1: p > 0.6$	B1	For correct H_0 and H_1
$P(X \ge 10) = {}_{12}C_{10}0.6^{10}0.4^2 +$		
$P(X \ge 10) = {}_{12}C_{10}0.6^{10}0.4^2 + {}_{12}C_{11}0.6^{11}0.4^1 + 0.6^{12} + {}_{0.0834}$	M1* M1*dep	For one Bin term (n = 12, p = 0.6) For attempt $X = 10, 11, 12$ or equiv.
- 0.0034	A1	For correct answer (or correct
		individual terms and dig showing 0.1)
Reject H ₀ , i.e. accept claim at 10% level	B1ft s	5 For correct conclusion
S.R. Use of Normal scores 4/5 max	B1	For correct H_0 and H_1
$z = \frac{9.5 - 7.2}{\sqrt{2.88}}$		
(or equiv. Using N(0.6, 0.24/12))	M1	Use of N(7.2, 2.88) or
= 1.3552		N(0.6, 0.24/12) and standardising with or without cc
Pr(>9.5) = 1 – 0.9123 = 0.0877	A1	For correct answer or 1.3552 and
Reject H ₀ , i.e. accept claim at 10% level	B1ft	1.282 seen For correct conclusion
	2	
3 (i) $31\pm 2.326 \times \frac{3}{\sqrt{20}}$	B1	For correct mean
= (29.4, 32.6)	M1	Calculation of correct form
		$\bar{x} \pm z \times \frac{s}{\sqrt{n}}$
		(must have \sqrt{n} in denominator)
	B1 A1	z = 2.326 Correct answer
(ii) 30% is inside interval	ftB1*	
Accept claim (at 2% level)		2 S.R. Solutions not using (i) score
		B1ft only for correct working and conclusion
4 (i) P(X > 1.5) = $\left[x - \frac{x^2}{4}\right]_{1.5}^2$	M1	For substituting 2 and 1.5 in their
		$\int f(x)dx$ (or area method $\frac{1}{2}$ their
٦.5 ٢		base x their height)
or 1 - $\left[x - \frac{x^2}{4}\right]_{.0}^{1.5}$		
= 0.0625	A1 2	2 For correct answer
L		

	Page 2 Mark Scheme A AND AS LEVEL – JUNE 2003			Syllabus Paper			
			A AND AS LE	VEL – JUNE 200	03	9709 7	
	(ii)	$E(X) = \int_{0}^{2} (x - x)^{2} dx$	$= \frac{1}{2}x^{2}dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{6}\right]_{0}^{2}$	M1		For evaluating their $\int xf(x)dx$	
		= 2/3		A1 2	2	For correct answer	
	(iii)	$m - \frac{m}{2}$	$\frac{n^2}{4} = 0.5$	M1		For equating their $\int f(x) dx$ to 0.5	
		m = 0).586 (2-√ <u>2</u>)	M1 A1 3	3	For solving the related quadratic For correct answer	
5	(i)		$= 1.7) = \Phi\left(\frac{1.7 - 2.1}{0.9/\sqrt{20}}\right)$ \$\Phi\$ (1.9876)	B1 M1 A1		For identifying prob Type I error For standardising For correct standardising and	
		= 0.02	234	A1 4	ı	correct area For correct final answer	
	• •		the II error) = $P(X > 1.7)$	B1		For identifying prob for Type II error	
		= 1 -	$\Phi\!\left(\frac{1.7-1.5}{0.9/\sqrt{20}}\right)$	M1		For standardising using 1.5 and their 1.7	
		_ 1	本 (0,0000) - 0,400	A1		For correct standardising and correct area	
		= 1 -	$\Phi(0.9938) = 0.160$	A1 4	•	For correct final answer	
6	(i)	$\lambda = 1$		M1		For attempting to find new λ and using it	
		P(X < e ^{-1.25}	$ \begin{pmatrix} 1+1.25 + \frac{1.25^2}{2} + \frac{1.25^3}{6} \end{pmatrix} $	M1		For summing $P((0,) 1, 2, 3)$ or $P(0, 1, 2, 3, 4)$ using a Poisson expression	
		= 0.9	62	A1 3	3	For correct answer	
	(ii)	P(> 2	(182.5, 182.5) 00 breakdowns) = $\left(\frac{200.5 - 182.5}{\sqrt{182.5}}\right)$	B1 M1		For correct mean and variance For standardising process with or without continuity correction	
			Φ (1.332)	A1ft		For correct standardising and correct tail	
		= 0.0	915 (0.0914)	A1 4	L	For correct answer	
		$\lambda = 6$	for phone calls .25 for total	B1			
		P(X =	$(= 4) = e^{-6.25} \left(\frac{6.25^4}{4!} \right)$	M1		For summing their two λ s and using a Poisson expression OR alt. method using sep. distributions 5	
		= 0.1	23	A1 3	3	terms req. For correct answer	

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	7

Γ

7 (i) 20 of A ~A*	B1	For correct mean for either
~N(401, 20 x 0.15 ²)		
~N(401, 0.45)		
20 of <i>B</i> ~B [*] ~N(401, 1.458)	B1	For variance 20 x 0.15 ² or
		20×0.27^2
A* - B* ∼N(0, 1.908)	M1	For adding their two variances
		, , , , , , , , , , , , , , , , , , ,
$P(A^* - B^* > 2)$		
(2-0)		
$= 1 - \Phi\left(\frac{2-0}{\sqrt{1.908}}\right)$	M1	For consideration of their
(1.908)		A* - B* > 2
- 4		
= 1 - Φ (1.4479)	M1	For standardising and finding
= 0.0738		correct area
- 0.0736	A1 6	For correct answer
<u>OR</u> $\overline{A} \sim N(20.05, 0.15^2/20),$		
B~N(20.05, 0.27 ² /20)	B1	For correct mean for either
	B1	For variance 0.15 ² /20 or 0.27 ² /20
$\overline{A} - \overline{B} \sim N(0, 0.00477)$	M1	For adding their variances
$P(\overline{A} - \overline{B} > 0.1)$	M1	For consideration of their
		$\overline{A} - \overline{B} > 0.1$
$= 1 - \Phi\left(\frac{0.1 - 0}{\sqrt{0.00477}}\right)$	M1	For standardising and finding
$(\sqrt{0.00477})$		correct area
		conect area
= 0.0738	A1 6	For correct answer
(ii) $1.96 = \frac{20.07 - 20.05}{(0.15/\sqrt{n})}$	M1	For an equation of correct form on
(ii) 1.90 - $\frac{(0.15/\sqrt{n})}{(0.15/\sqrt{n})}$		
		RHS involving \sqrt{n}
	B1	For 1.96 used
	M1	For solving an equation of correct
		form (any z)
<i>n</i> = 216	A1 4	For correct answer