

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/01

Paper 1 Pure Mathematics 1

For examination from 2020

SPECIMEN PAPER

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 22 pages. Blank pages are indicated.

© UCLES 2017 [Turn over

BLANK PAGE

1 The following points

A(0, 1), B(1, 6), C(1.5, 7.75), D(1.9, 8.79) and E(2, 9)

lie on the curve y = f(x). The table below shows the gradients of the chords AE and BE.

Chord	AE	BE	CE	DE
Gradient of chord	4	3		

., \	Complete the table to show the gradients of <i>CE</i> and <i>DE</i> .	[2
•		•••••
•		
•		••••••
•		•••••
		•••••
5	State what the values in the table indicate about the value of $f'(2)$.	[1
		L
٠		
·		
•		
•		•••••
-		

 $f: x \mapsto 3x + 2, \quad x \in \mathbb{R},$

•	T	C 1 -	are defined	1.
,	Hillotions	Tana a	are detined	nt.

Solve the equation Γ ⁻¹ (x) = gf(x). [4]	$g: x \mapsto 4x - 12$	$x \in \mathbb{R}$.
	Solve the equation $f^{-1}(x) = gf(x)$.	[4]

Find	the value o	f <i>n</i> .						
•••••						 		
•••••						 		
•••••						 	••••••	
•••••	••••••		• • • • • • • • • • • • • • • • • • • •		••••••	 •	••••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••		• • • • • • • • • • • • • • • • • • • •			 		• • • • • • • • • • • • • • • • • • • •
•••••				•••••	•••••	 		

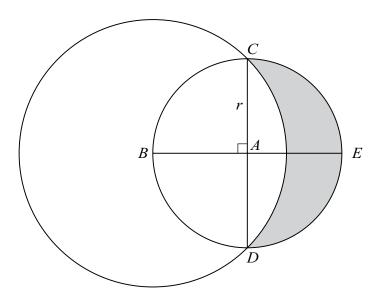
Find f	eve has equate $f(x)$.						
•••••		•••••	••••••	 	••••••	 •••••	•••••
		•••••	•••••	 		 •••••	
				 •••••		 	
•••••				 		 	
•••••			•••••	 		 •••••	
•••••			•••••	 		 •••••	
				 •••••		 	
•••••				 		 	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	 ,		 •••••	• • • • • • • • • • • • • • • • • • • •
••••••		••••••		 		 	
				 •••••		 	

	Find and simplify the equation of the translated curve.
,	The graph of $y = f(x)$ is transformed to the graph of $y = 3f(-x)$
	The graph of $y = f(x)$ is transformed to the graph of $y = 3f(-x)$.
	The graph of $y = f(x)$ is transformed to the graph of $y = 3f(-x)$. Describe fully the two single transformations which have been combined to give the transformation.
-	Describe fully the two single transformations which have been combined to give the transformation.
-	Describe fully the two single transformations which have been combined to give the
-	Describe fully the two single transformations which have been combined to give the transformation.
	Describe fully the two single transformations which have been combined to give the transformation.
-	Describe fully the two single transformations which have been combined to give the transformation.
	Describe fully the two single transformations which have been combined to give the transformation.
- 1	Describe fully the two single transformations which have been combined to give the transformation.
	Describe fully the two single transformations which have been combined to give the transformation.
	Describe fully the two single transformations which have been combined to give the transformation.
- 1	Describe fully the two single transformations which have been combined to give the transformation.
1	Describe fully the two single transformations which have been combined to give the transformation.
	Describe fully the two single transformations which have been combined to give the transformation.

	•••••
	•••••

••	
••	•••••
••	
••	
••	
••	
••	
••	
••	

$6\cos^2 x - \cos x - 1 = 0.$	[3



0	A	12
8	A curve has equation $y =$	$\overline{3-2x}$

	Find $\frac{dy}{dx}$.	[
		•••••
0	int moves along this curve. As the point passes through A , the x -coordinate is units per second and the y -coordinate is increasing at a rate of 0.4 units per second	ncreasing at a rate
5		
	Find the possible x -coordinates of A .	
	Find the possible <i>x</i> -coordinates of <i>A</i> .	
	Find the possible <i>x</i> -coordinates of <i>A</i> .	
	Find the possible <i>x</i> -coordinates of <i>A</i> .	
	Find the possible <i>x</i> -coordinates of <i>A</i> .	

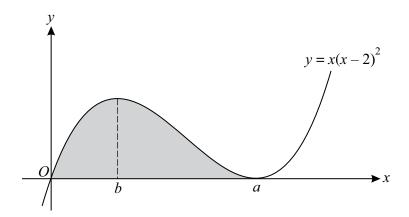
• • • • • • • • • • • • • • • • • • • •

9

The diagram shows a circle with centre A and radius r. Diameters CAD and BAE are perpendicular to each other. A larger circle has centre B and passes through C and D.

(a)	Show that the radius of the larger circle is $r\sqrt{2}$.	[1]
		••••
		••••
(b)	Find the area of the shaded region in terms of r .	[6]
		••••
		••••
		••••

	State the coordinates of <i>C</i> .	[1]
t ia	given that the midpoint D of AB has coordinates $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	
	given that the midpoint, D , of AB has coordinates $(1\frac{1}{2}, 1\frac{1}{2})$.	
b)	Find the equation of AB, giving your answer in the form $y = mx + c$.	[4]
		••••••


Find, by calculation, the x-coordinates of A and B.	••••••	•••••	•••••	•••••			 	•••••
	Find	l, by calculat	tion, the x-co	oordinates o	f A and B .			
	•••••		•••••			•••••	 •••••	
						•••••	 	
							 	•••••
						•••••	 •••••	
						• • • • • • • • • • • • • • • • • • • •	 	•••••
		•••••						
							 	•••••

11 The function f is defined, for $x \in \mathbb{R}$, by $f: x \mapsto x^2 + ax + b$, where a and b are constants.

F		
	find the range of f.	
••		
••		
••		
	t is given instead that $a = 5$ and that the roots of the equation $f(x) = 0$ and	re k and $-2k$, where
	t is given instead that $a = 5$ and that the roots of the equation $f(x) = 0$ an onstant.	The k and $-2k$, where
C		re k and $-2k$, where
C	onstant.	re k and $-2k$, where
c	onstant.	re k and $-2k$, where
C	onstant.	re k and -2k, where
C	onstant.	re k and –2k, where
C	onstant.	re k and -2k, where
C	onstant.	re k and -2k, where
C	onstant.	re k and -2k, where

(c)	Show that if the equation $f(x + a) = a$ has no real roots then $a^2 < 4(b - a)$. [3]
(0)	Show that if the equation $1(x+u) = u$ has no real roots then $u = v + (v-u)$.

12

The diagram shows the curve with equation $y = x(x - 2)^2$. The minimum point on the curve has coordinates (a, 0) and the x-coordinate of the maximum point is b, where a and b are constants.

(a)	State the value of a .	[1]
(b)	Calculate the value of <i>b</i> .	[4]

			•••••			
•••••	•••••	•••••••••••••••••••••••••••••••••••••••	•••••	••••••		•••••
•••••	•••••	•••••			•••••	•••••
The gradient,	$\frac{dy}{dx}$, of the cu	rve has a min	imum value <i>m</i>			
		rve has a min	imum value <i>m</i> .			
The gradient,		rve has a min	imum value <i>m</i> .			
		rve has a min	imum value <i>m</i>			
		rve has a min	imum value <i>m</i>			
		rve has a min	imum value <i>m</i>			
		rve has a min	imum value <i>m</i>			
		rve has a min	imum value m			
		rve has a mini	imum value m			
Calculate the	value of m.					
Calculate the	value of m.					
Calculate the	value of m.					
Calculate the	value of m.					
Calculate the	value of m.					
Calculate the	value of m.					
Calculate the	value of m.					

Additional page

If you use the following lined must be clearly shown.	l page to complete	the answer(s) to an	y question(s), the qu	uestion number(s)
		•••••	•••••	
		•••••	•••••	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.