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1

The diagram shows one loop of the curve whose polar equation is r = a sin 2θ, where a is a positive

constant. Find the area of the loop, giving your answer in terms of a and π. [4]

2 Prove by induction that, for all N ≥ 1,

N

∑
n=1

n + 2

n(n + 1)2n
= 1 − 1

(N + 1)2N
. [5]

3 Let v
1
, v

2
, v

3
, . . . be a sequence and let

u
n
= nv

n
− (n + 1)v

n+1
,

for n = 1, 2, 3, . . . . Find
N

∑
n=1

u
n
. [2]

In each of the following cases determine whether the series u
1
+ u

2
+ u

3
+ . . . is convergent, and

justify your conclusion. Give the sum to infinity where this exists.

(i) v
n
= n

−1

2 . [2]

(ii) v
n
= n

−3

2 . [2]

4 The curve C has equation y = x2 − 4

x − 3
.

(i) Find the equations of the asymptotes of C. [3]

(ii) Draw a sketch of C and its asymptotes. Give the coordinates of the points of intersection of C

with the coordinate axes. [4]

[You are not required to find the coordinates of any turning points.]

9231/01/M/J/03



3

5 The equation

8x
3 + 12x

2 + 4x − 1 = 0

has roots α , β , γ . Show that the equation with roots 2α + 1, 2β + 1, 2γ + 1 is

y
3 − y − 1 = 0. [3]

The sum (2α + 1)n + (2β + 1)n + (2γ + 1)n is denoted by S
n
. Find the values of S

3
and S−2

. [5]

6 Use de Moivre’s theorem to show that

cos 6θ = 32 cos
6 θ − 48 cos

4 θ + 18 cos
2 θ − 1. [5]

Hence solve the equation

64x
6 − 96x

4 + 36x
2 − 1 = 0,

giving each root in the form cos kπ. [4]

7 The variables x and y are related by the equation x4 + y4 = 1, where 0 < x < 1 and 0 < y < 1.

(i) Obtain an equation which relates x, y,
dy

dx
,

d2y

dx2
, and deduce that

d2y

dx2
= −3x2

y7
. [6]

(ii) Given that y = b
1

when x = a
1

and that y = b
2

when x = a
2
, where a

1
< a

2
, prove that the mean

value of
d3y

dx3
with respect to x over the interval a

1
≤ x ≤ a

2
is

3(a2

1
b7

2
− a2

2
b7

1
)

b7
1
b7

2
(a

2
− a

1
) . [4]
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8 The linear transformation T : �4 → �4 is represented by the matrix A, where

A = 
1 −1 −2 3

2 −1 −1 11

3 −2 −3 14

4 −3 −5 17

 .

Find the rank of A and a basis for the null space of T. [7]

The vector


1

−2

−1

−1

 is denoted by e. Show that there is a solution of the equation Ax = Ae of the form

x = 
p

q

1

1

, where p and q are to be found. [4]

9 The variables x and t, where x > 0 and 0 ≤ t ≤ 1

2
π, are related by

x
d2x

dt2
+ (dx

dt
)2 + 5x

dx

dt
+ 3x

2 = 3 sin 2t + 15 cos 2t,

and the variables x and y are related by y = x2. Show that

d2y

dt2
+ 5

dy

dt
+ 6y = 6 sin 2t + 30 cos 2t. [3]

Hence find x in terms of t, given that x = 2 and
dx

dt
= −3

2
when t = 0. [10]

10 Find the acute angle between the planes with equations

x − 2y + � − 9 = 0 and x + y − � + 2 = 0. [3]

The planes meet in the line l, and A is the point on l whose position vector is pi + qj + k.

(i) Find p and q. [2]

(ii) Find a vector equation for l. [3]

The non-coincident planes Π
1

and Π
2

are both perpendicular to l. The perpendicular distance from A

to Π
1

is
√

14 and the perpendicular distance from A to Π
2

is also
√

14. Find equations for Π
1

and Π
2

in the form ax + by + c� = d. [5]
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11 Answer only one of the following two alternatives.

EITHER

Given that

I
n
= � 1

0

xne−αx dx,

where α is a positive constant and n is a non-negative integer, show that for n ≥ 1,

αI
n
= nI

n−1
− e

−α
. [3]

Hence, or otherwise, find the coordinates of the centroid of the finite region bounded by the x-axis,

the line x = 1 and the curve y = xe−x, giving your answers in terms of e. [11]

OR

The vector e is an eigenvector of each of the n × n matrices A and B, with corresponding eigenvalues

λ and µ respectively. Prove that e is an eigenvector of the matrix AB with eigenvalue λµ. [3]

Find the eigenvalues and corresponding eigenvectors of the matrix C, where

C = ( 0 1 4

1 2 −1

2 1 2

) . [8]

Verify that one of the eigenvectors of C is an eigenvector of the matrix D, where

D = (−3 1 1

0 −2 4

0 0 −4

) . [2]

Hence find an eigenvalue of the matrix CD. [1]
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