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1

The curve C has polar equation

r = θ
1

2 e
θ2/π

,

where 0 ≤ θ ≤ π. The area of the finite region bounded by C and the line θ = β is π (see diagram).

Show that

β = (π ln 3)1

2 . [6]

2 Given that

u
n
= 1

n2 − n + 1
− 1

n2 + n + 1
,

find S
N
=

2N

∑
n=N+1

u
n

in terms of N. [3]

Find a number M such that S
N
< 10−20 for all N > M. [3]

3 Three n × 1 column vectors are denoted by x
1
, x

2
, x

3
, and M is an n × n matrix. Show that if x

1
, x

2
, x

3
are linearly dependent then the vectors Mx

1
, Mx

2
, Mx

3
are also linearly dependent. [2]

The vectors y
1
, y

2
, y

3
and the matrix P are defined as follows:

y
1
= ( 1

5

7

) , y
2
= ( 2

−3

4

) , y
3
= ( 5

51

55

) ,

P = ( 1 −4 3

0 2 5

0 0 −7

) .

(i) Show that y
1
, y

2
, y

3
are linearly dependent. [2]

(ii) Find a basis for the linear space spanned by the vectors Py
1
, Py

2
, Py

3
. [2]
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4 Given that y = x sin x, find
d2y

dx2
and

d4y

dx4
, simplifying your results as far as possible, and show that

d6y

dx6
= −x sin x + 6 cos x. [3]

Use induction to establish an expression for
d2ny

dx2n
, where n is a positive integer. [5]

5 The integral I
n

is defined by

I
n
= �

1

4
π

0

secn x dx.

By considering
d

dx
(tan x sec

n
x), or otherwise, show that

(n + 1)I
n+2

= 2
1

2
n + nI

n
. [4]

Find the value of I
6
. [4]

6 Find the sum of the squares of the roots of the equation

x
3 + x + 12 = 0,

and deduce that only one of the roots is real. [4]

The real root of the equation is denoted by α. Prove that −3 < α < −2, and hence prove that the

modulus of each of the other roots lies between 2 and
√

6. [5]

7 Find the general solution of the differential equation

d2y

dt2
+ 4

dy

dt
+ 4y = e

−αt
,

where α is a constant and α ≠ 2. [7]

Show that if α < 2 then, whatever the initial conditions, yeαt → 1

(2 − α)2
as t → ∞. [2]

8 Given that � = eiθ and n is a positive integer, show that

�n + 1

�n
= 2 cos nθ and �n − 1

�n
= 2i sin nθ. [2]

Hence express sin6 θ in the form

p cos 6θ + q cos 4θ + r cos 2θ + s,

where the constants p, q, r, s are to be determined. [4]

Hence find the mean value of sin6 θ with respect to θ over the interval 0 ≤ θ ≤ 1

4
π. [5]
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9 The line l
1

passes through the point A with position vector i − j − 2k and is parallel to the vector

3i − 4j − 2k. The variable line l
2

passes through the point (1 + 5 cos t)i − (1 + 5 sin t)j − 14k, where

0 ≤ t < 2π, and is parallel to the vector 15i + 8j − 3k. The points P and Q are on l
1

and l
2

respectively,

and PQ is perpendicular to both l
1

and l
2
.

(i) Find the length of PQ in terms of t. [4]

(ii) Hence show that the lines l
1

and l
2

do not intersect, and find the maximum length of PQ as

t varies. [3]

(iii) The plane Π
1

contains l
1

and PQ; the plane Π
2

contains l
2

and PQ. Find the angle between the

planes Π
1

and Π
2
, correct to the nearest tenth of a degree. [4]

10 Find the eigenvalues and corresponding eigenvectors of the matrix A, where

A = ( 6 4 1

−6 −1 3

8 8 4

) . [8]

Hence find a non-singular matrix P and a diagonal matrix D such that A + A2 + A3 = PDP−1. [4]

11 Answer only one of the following two alternatives.

EITHER

The curve C has equation y = 5(x − 1)(x + 2)
(x − 2)(x + 3) .

(i) Express y in the form P + Q

x − 2
+ R

x + 3
. [3]

(ii) Show that
dy

dx
= 0 for exactly one value of x and find the corresponding value of y. [4]

(iii) Write down the equations of all the asymptotes of C. [3]

(iv) Find the set of values of k for which the line y = k does not intersect C. [4]

OR

A curve has equation y = 2

3
x

3

2 , for x ≥ 0. The arc of the curve joining the origin to the point where

x = 3 is denoted by R.

(i) Find the length of R. [4]

(ii) Find the y-coordinate of the centroid of the region bounded by the x-axis, the line x = 3 and R.

[5]

(iii) Show that the area of the surface generated when R is rotated through one revolution about the

y-axis is 232

15
π. [5]
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