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1 The equation

x
4 − x

3 − 1 = 0

has roots α, β , γ , δ . By using the substitution y = x3, or by any other method, find the exact value of

α6 + β6 + γ 6 + δ 6. [5]

2 Verify that, for all positive values of n,

1

(n + 2)(2n + 3) −
1

(n + 3)(2n + 5) = 4n + 9

(n + 2)(n + 3)(2n + 3)(2n + 5) . [2]

For the series
N

∑
n=1

4n + 9

(n + 2)(n + 3)(2n + 3)(2n + 5) ,

find

(i) the sum to N terms, [3]

(ii) the sum to infinity. [1]

3 The equation of a curve is y = λx2, where λ > 0. The region bounded by the curve, the x-axis and

the line x = a, where a > 0, is denoted by R. The y-coordinate of the centroid of R is a. Show that

λ = 10

3a
. [6]

4 A curve has equation

y = 1

3
x3 + 1.

The length of the arc of the curve joining the point where x = 0 to the point where x = 1 is denoted

by s. Show that

s = ã 1

0

√(1 + x4) dx. [2]

The surface area generated when this arc is rotated through one complete revolution about the x-axis

is denoted by S. Show that

S = 1

9
π(18s + 2

√
2 − 1). [4]

[Do not attempt to evaluate s or S.]

5 Draw a sketch of the curve C whose polar equation is r = θ , for 0 ≤ θ ≤ 1

2
π. [2]

On the same diagram draw the line θ = α , where 0 < α < 1

2
π. [1]

The region bounded by C and the line θ = 1

2
π is denoted by R. Find the exact value of α for which the

line θ = α divides R into two regions of equal area. [4]
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6 A curve has equation

(x + y)(x2 + y
2) = 1.

Find the values of
dy

dx
and

d2y

dx2
at the point (0, 1). [7]

7 Let

I
n
= ã 1

0

tne−t dt,

where n ≥ 0. Show that, for all n ≥ 1,

I
n
= nI

n−1
− e

−1
. [3]

Hence prove by induction that, for all positive integers n,

I
n
< n!. [5]

8 Find the general solution of the differential equation

4
d2y

dx2
+ 4

dy

dx
+ 65y = 65x

2 + 8x + 73. [6]

Show that, whatever the initial conditions,
y

x2
→ 1 as x → ∞. [2]

9 The matrix

A = ( 3 1 4

1 5 −1

2 1 5

)
has eigenvalues 1, 5, 7. Find a set of corresponding eigenvectors. [5]

Find a matrix P and a diagonal matrix D such that An = PDP−1. [3]

[The evaluation of P−1 is not required.]

Determine the set of values of the real constant k such that knAn tends to the zero matrix as n → ∞.

[3]

10 The curve C has equation

y = x2

x + λ
,

where λ is a non-zero constant. Obtain the equation of each of the asymptotes of C. [3]

In separate diagrams, sketch C for the cases λ > 0 and λ < 0. In both cases the coordinates of the

turning points must be indicated. [8]
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11 The line l
1

is parallel to the vector 4j − k and passes through the point A whose position vector is

2i + j + 4k. The variable line l
2

is parallel to the vector i − (2 sin t)j, where 0 ≤ t < 2π, and passes

through the point B whose position vector is i + 2j + 4k. The points P and Q are on l
1

and l
2
,

respectively, and PQ is perpendicular to both l
1

and l
2
.

(i) Find the length of PQ in terms of t. [5]

(ii) Hence find the values of t for which l
1

and l
2

intersect. [2]

(iii) For the case t = 1

4
π, find the perpendicular distance from A to the plane BPQ, giving your answer

correct to 3 decimal places. [5]
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12 Answer only one of the following two alternatives.

EITHER

By considering
n−1

∑
k=0

(1 + i tan θ)k, show that

n−1

∑
k=0

cos kθ sec
k θ = cot θ sin nθ sec

n θ ,

provided θ is not an integer multiple of 1

2
π. [7]

Hence or otherwise show that

n−1

∑
k=0

2
k

cos(1

3
kπ) = 2n√

3
sin(1

3
nπ). [2]

Given that 0 < x < 1, show that

n−1

∑
k=0

cos(k cos−1 x)
xk

= sin(n cos−1 x)
xn−1

√(1 − x2) . [4]

OR

The linear transformations T
1

: >4 → >4 and T
2

: >4 → >4 are represented by the matrices M
1

and

M
2
, respectively, where

M
1
= 

1 1 1 2

1 4 7 8

1 7 11 13

1 2 5 5

 , M
2
= 

2 0 −1 −1

5 1 −3 −3

3 −1 −1 −1

13 −1 −6 −6

 .

(i) Find a basis for R
1
, the range space of T

1
. [4]

(ii) Find a basis for K
2
, the null space of T

2
, and hence show that K

2
is a subspace of R

1
. [5]

The set of vectors which belong to R
1

but do not belong to K
2

is denoted by W .

(iii) State whether W is a vector space, justifying your answer. [1]

The linear transformation T
3

: >4 → >4 is the result of applying T
1

and then T
2
, in that order.

(iv) Find the dimension of the null space of T
3
. [3]
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