
**CAMBRIDGE INTERNATIONAL EXAMINATIONS** GCE Advanced Level



## 9231 FURTHER MATHEMATICS

9231/23

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2012 | 9231     | 23    |

## Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2012 | 9231     | 23    |

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √\*" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2012 | 9231     | 23    |

| Question<br>Number | Mark Scheme I              | Details                                |                                                                                      |         | Part<br>Mark | Total |
|--------------------|----------------------------|----------------------------------------|--------------------------------------------------------------------------------------|---------|--------------|-------|
| 1                  | Find radial acce           | eleration when $t = 3$ :               | $(k-3^2)^2/1.5$ [m s <sup>-2</sup> ]                                                 | B1      |              |       |
|                    | Find transverse            | accel. (ignoring sign) when $t = 3$    | 3: $2t = 6$ [m s <sup>-2</sup> ]                                                     | B1      |              |       |
|                    | Equate magnitu             | ides to find <i>k</i> :                | $(k-9)^2 = 9, \ k = 6 \text{ or } 12$                                                | 2 M1 A1 | 4            | [4]   |
| 2                  | Use conservation           | on of energy:                          | $\frac{1}{2}mv^2 = \frac{1}{2}mkga - mga(1 - \cos\theta)$                            | B1      |              |       |
|                    | Use $F = ma$ rad           | ially:                                 | $R + 4mg - mg\cos\theta = mv^2/a$                                                    | M1 A1   |              |       |
|                    | Eliminate $v$ to t         | find <i>R</i> :                        | $R = mg(3\cos\theta + k - 6)$ A.G.                                                   | M1 A1   | 5            |       |
|                    | Find <i>k</i> from $v \ge$ | 0 ( $or > 0$ ) when $\theta = \pi$ :   | $k \ge 4 (or k > 4)$                                                                 | M1 A1   | 2            | [7]   |
| 3 (i)              | Find $R_C$ by mor          | nents for <i>BC</i> about <i>B</i> :   | $R_C 2a \sin \beta = mg a \cos \beta$                                                |         |              |       |
|                    |                            |                                        | $R_C = \frac{1}{2} mg \cot \beta$ A.G.                                               | M1 A1   | 2            |       |
| (ii)               | EITHER:                    | Moments for system about A:            | $R_C \left( 2a\sin\alpha + 2a\sin\beta \right)$                                      |         |              |       |
|                    |                            |                                        | $= mg (3a \cos \alpha + a \cos \beta)$                                               | M1 A1   |              |       |
|                    |                            | Substitute for $R_C$ from (i):         | $\frac{1}{2}\cos\beta(2\sin\alpha+2\sin\beta)$                                       |         |              |       |
|                    |                            |                                        | $= \sin \beta (3 \cos \alpha + \cos \beta)$                                          | M1 A1   |              |       |
|                    |                            |                                        | $\tan \alpha = 3 \tan \beta$ A.G.                                                    | A1      |              |       |
|                    | OR:                        | Moments for <i>AB</i> about <i>B</i> : | $R_A 2a \cos \alpha = F_A 2a \sin \alpha$                                            |         |              |       |
|                    |                            |                                        | + $mg a \cos \alpha$                                                                 | (M1 A1) |              |       |
|                    |                            | Substitute $R_A = 2mg$ , $F_A = R_C$ : | $4\cos\alpha = (\frac{1}{2} \cot\beta)\sin\alpha + \cos\alpha$                       | (M1 A1) |              |       |
|                    |                            |                                        | $\tan \alpha = 3 \tan \beta$ A.G.                                                    | (A1)    | 5            |       |
| (iii)              | Find $\mu_{min}$ using     | $F_A \leq \mu R_A$ :                   | $\mu_{min} = \frac{1}{4} \cot \beta = \frac{3}{4} \cot \alpha = \frac{1}{4}\sqrt{3}$ | M1 A1   | 2            | [9]   |

|                    | Page 5             | Mark Schen                                                      |                                                   | Syllabus                 |    | Paper        |       |
|--------------------|--------------------|-----------------------------------------------------------------|---------------------------------------------------|--------------------------|----|--------------|-------|
|                    |                    | GCE A LEVEL – October/                                          | November 2012                                     | 9231                     |    | 23           |       |
| Question<br>Number | Trituin Sener      | ne Details                                                      |                                                   |                          |    | Part<br>Mark | Total |
| 4 (i)              | Use cons. o        | f momentum for 1 <sup>st</sup> collision:                       | $mu_A + 2mu_B = 2mu$                              |                          | B1 |              |       |
|                    | Use Newton         | n's law of restitution:                                         | $u_A - u_B = -e  2u$                              |                          | B1 |              |       |
|                    | Eliminate <i>u</i> | $_A$ to find $u_B$ :                                            | $u_B = 2u(1+e)/3$ A.C                             | G. MI                    | A1 | 4            |       |
| (ii)               | Use cons. o        | f momentum for 2 <sup>nd</sup> collision:                       | $2mv_B + mv_C = 2mu_B -$                          | - <i>mu</i>              | M1 |              |       |
|                    | Use Newton         | n's law of restitution:                                         | $v_B - v_C = -e (u_B + i)$                        | l)                       | M1 |              |       |
|                    | Substitute a       | nd solve for $v_B$ :                                            | $v_B = u(1+e)(1-2e)/2$                            | 9 (A.E.F.)               | A1 | 3            |       |
| (iii)              | Find $u_A$ :       |                                                                 | $u_A = \frac{2}{3}u(1-2e)$                        |                          | B1 |              |       |
|                    | State or imp       | bly dirns. in which A, B move:                                  | $e > \frac{1}{2}$ so $A/B$ change of              | direction                |    |              |       |
|                    |                    | (needs $u_A$ , $v_B$ correct)                                   | in 1 <sup>st</sup> /2 <sup>nd</sup> collision     | (A.E.F.)                 | B1 |              |       |
|                    | Show $ u_A  >$     | $ v_B $ : (needs $u_A$ , $v_B$ correct):                        | $ u_A  /  v_B  = \frac{2}{3} / (1 + e) /$         | /9                       |    |              |       |
|                    |                    |                                                                 | = 6/(1+e) > 1                                     | 1 (A.E.F.) M1            | A1 | 4            | [11]  |
| 5                  | State or fine      | d MI of rod <i>AB</i> (or <i>AD</i> ) about <i>A</i> :          | $I_{AB} = \frac{1}{3}ma^2 + ma^2 = (4, 4)$        | $/3)ma^2$                | B1 |              |       |
|                    | State or fine      | d MI of rod <i>BC</i> (or <i>CD</i> ) about <i>A</i> :          | $I_{BC} = \frac{1}{3}ma^2 + m5a^2$ [=(            | $(16/3)ma^2$ ]           | M1 |              |       |
|                    | Find MI of         | frame about A:                                                  | $I = 2(I_{AB} + I_{BC}) = 40ma$                   | $r^{2}/3$ <b>A.G.</b> M1 | A1 | 4            |       |
|                    | Use energy         | to find ang. vel. $\omega$ at angle $\theta$ :                  | $\frac{1}{2}I\omega^2 = \frac{1}{2}I(6g/5a)$      |                          |    |              |       |
|                    | (lose A1           | for one incorrect term)                                         | $-4mg a\sqrt{2} (1 -$                             | $-\cos\theta$ M1         | A2 |              |       |
|                    | Substitute f       | for <i>I</i> and simplify (A.E.F.):                             | $\omega = \sqrt{\{(3g/5a)(2 - \sqrt{2}($          | $1 - \cos \theta$ ))} M1 | A1 | 5            |       |
|                    | Equate AC          | $\omega$ to $k\sqrt{(ga)}$ to find k when $\theta = 90^\circ$ : | $k\sqrt{(ga)} = 2\sqrt{2a}\sqrt{((3g/5))}$        | $5a)(2-\sqrt{2})$ M1     | A1 |              |       |
|                    |                    |                                                                 | $k = 2\sqrt{\{6(2-\sqrt{2})/5\}} =$               | 1.68                     | A1 | 3            | [12]  |
| 6 (i)              | State or fine      | d by integration $F(x)$ :                                       | $F(x) = 1 - e^{-x/6} \ (x \ge 0),$                | 0 otherwise M1           | A1 | 2            |       |
| (ii)               | State or fine      | d mean $\mu$ :                                                  | $\mu = 1/(1/6) = 6$                               |                          | B1 |              |       |
|                    | Find $\pm P(m)$    | $\leq X \leq \mu$ ) [ <i>m</i> = 4.16 not reqd]:                | $F(\mu) - \frac{1}{2} = 1 - e^{-1} - \frac{1}{2}$ | M                        | A1 |              |       |
|                    |                    |                                                                 | Reqd. prob. = $0.132$                             |                          | A1 | 4            | [6]   |

|                    | Page 6            | Mark Scher                               |                                            | Syllabus        |        | Paper        |       |
|--------------------|-------------------|------------------------------------------|--------------------------------------------|-----------------|--------|--------------|-------|
|                    |                   | GCE A LEVEL – October                    | November 2012                              | 9231            |        | 23           |       |
| Question<br>Number | Mark Schei        | ne Details                               |                                            |                 |        | Part<br>Mark | Total |
| 7 (i)              | State suitab      | le assumption (A.E.F.):                  | Population is Normal                       |                 | B1     |              |       |
|                    | Find confid       | ence interval:                           | $1110.8/10 \pm t \sqrt{333.9}$             | 9/90)           | M1 A1  |              |       |
|                    |                   |                                          | $= 111 \cdot 1 \pm t \sqrt{3} \cdot 71$    |                 | A1     |              |       |
|                    | State or use      | correct tabular value of <i>t</i> :      | $t_{9,0.995} = 3.25$                       |                 | A1     |              |       |
|                    | Evaluate C.       | I.:                                      | 111 ± 6 or [105, 117                       | ]               | A1     | 6            |       |
| (ii)               | Compare t         | , est. variance <i>s</i> and <i>n</i> :  | t and s smaller, n large                   | r               | M1     |              |       |
|                    | Deduce effe       | ect on width of C.I. (A.E.F.):           | Width is less than in (i                   | )               | A1     | 2            | [8]   |
|                    | <b>S.R.</b> B1 if | valid apart from considering <i>n</i>    |                                            |                 |        |              |       |
| 8                  | Find value        | of $p$ for binomial dist.:               | mean = $150/50 = 3$ , p                    | = 3/4           | M1 A1  |              |       |
|                    | Find expect       | ted binomial values (to 2 d.p.):         | 0.20 2.34 10.55 21.0                       | 9 15.82         | M1 A1  |              |       |
|                    | Combine ad        | djacent cells since exp. value < 5:      | <i>O</i> : 14 17                           | 19              |        |              |       |
|                    |                   |                                          | <i>E</i> : 13.09 21.0                      | 9 15.82         | *M1    |              |       |
|                    | Calculate v       | alue of $\chi^2$ (to 2 d.p.; A1 dep *M1) | ): $\chi^2 = 1.50$                         | M               | [1 *A1 |              |       |
|                    | State or use      | e consistent tabular value (to 2 d.p.):  | $\chi_{1, 0.9}^2 = 2.706$ (cells           | s combined)     | *B1    |              |       |
|                    |                   |                                          | $[\chi_{2,0.9}^2 = 4.605, \chi_{3,0.9}^2]$ | $e^2 = 6.251$ ] |        |              |       |
|                    | Correct con       | clusion (A.E.F., dep *A1, *B1):          | 1.50 < 2.71 so distn. d                    | oes fit         | A1     | 9            | [9]   |

|                    | Page 7       | Mark Sche                                                 |                                                     | Syllabus                         |        | Paper        |       |
|--------------------|--------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------|--------|--------------|-------|
|                    |              | GCE A LEVEL – October                                     | r/November 2012                                     | 9231                             |        | 23           |       |
| Question<br>Number | Mark Schei   | ne Details                                                |                                                     |                                  |        | Part<br>Mark | Total |
| 9                  | State hypot  | heses:                                                    | $H_0: \mu_P = \mu_Q, H_1: \mu_P \neq Q$             | $\mu_Q$                          | B1     |              |       |
|                    | Estimate po  | opulation variance using P's sample                       | e: $s_P^2 = (2120 - 321 \cdot 2^2)!$                | 50) / 49                         |        |              |       |
|                    | (allow us    | se of biased: $\sigma_{P,50}^{2} = 1.132 \text{ or } 1.0$ | $(64^2)$ [= 1.155 or 1.07                           | 75 <sup>2</sup> ]                | M1     |              |       |
|                    | Estimate po  | opulation variance using $Q$ 's sampl                     | e: $s_Q^2 = (3310 - 475 \cdot 3^2 / 3310)$          | 70) / 69                         |        |              |       |
|                    | (allow us    | se of biased: $\sigma_{Q,70}^2 = 1.182 \text{ or } 1.182$ | (1.109) (= 1.199 or 1.09                            | $95^{2}$ ]                       | M1     |              |       |
|                    | Estimate po  | opulation variance for combined sa                        | mple: $s^2 = s_P^2 / 50 +$                          | ${s_Q}^2/70$                     |        |              |       |
|                    |              |                                                           | = 0.04023                                           | or $0.2006^2$                    |        |              |       |
|                    | (allow us    | se of $\sigma_{P,50}^{2}$ , $\sigma_{Q,70}^{2}$ )         | (or 0.03949 or 0.19                                 | $(87^2)$                         | M1 A1  |              |       |
|                    | Calculate v  | alue of $z$ (to 2 d.p., either sign):                     | z = (6.424 - 6.79) / s                              | ]                                | M1 A1  |              |       |
|                    |              |                                                           | = -0.366/0.2006 = -                                 | 1.82[5]                          |        |              |       |
|                    |              |                                                           | ( <i>or</i> –                                       | 1.84)                            | A1     |              |       |
|                    | S.R. Allow   | (implicit) assumption of equal var                        | riances,                                            |                                  |        |              |       |
|                    | but          | deduct A1 if not explicit:                                |                                                     |                                  |        |              |       |
|                    | Find         | pooled estimate of common varian                          | here $s^2$ : $(50\sigma_{P,50}^2 + 70\sigma_{Q,7})$ | <sub>70</sub> <sup>2</sup> )/118 |        |              |       |
|                    |              |                                                           | $= 1.180 \text{ or } 1.086^2$                       | (1                               | M1A1)  |              |       |
|                    | Calc         | ulate value of z (to 2 d.p.):                             | $z = (6.424 - 6.79)/s\sqrt{3}$                      | (1/50+1/70) (N                   | /1 A1) |              |       |
|                    |              |                                                           | = -1.82                                             |                                  | (A1)   |              |       |
|                    | State or use | e correct tabular z value:                                | $z_{0.95} = 1.645$ (to 2 d.                         | .p.)                             | B1     |              |       |
|                    | Conclusion   | consistent with values (A.E.F):                           | Breaking strengths not                              | the same                         | A1√    | 10           | [10]  |

|                    | Page 8                                          | Mark Sch                                                      |                               | Syllabus                        | Paper        |       |
|--------------------|-------------------------------------------------|---------------------------------------------------------------|-------------------------------|---------------------------------|--------------|-------|
|                    |                                                 | GCE A LEVEL – Octob                                           | er/November 2012              | 9231                            | 23           |       |
| Question<br>Number | Mark Sche                                       | me Details                                                    |                               |                                 | Part<br>Mark | Total |
| 10                 | Calculate g                                     | pradient b in $y - \overline{y} = b(x - \overline{x})$ :      |                               |                                 |              |       |
|                    |                                                 | b = (47136 -                                                  | - 610 × 578/8) / (49682 – 61  | $0^{2}/8)$                      |              |       |
|                    |                                                 |                                                               | = 3063.5 / 3169.5 = 0         | 0.966[6]                        | B1           |       |
|                    | Find regres                                     | sion line of $y$ on $x$ (A.E.F.):                             | y = 578/8 + 0.967 (x - 6)     | 510/8)                          | M1           |       |
|                    |                                                 |                                                               | = 72.2[5] + 0.967 (x)         | - 76.2[5])                      |              |       |
|                    |                                                 |                                                               | or -1.45 + 0.967x             |                                 | A1           |       |
|                    | Calculate g                                     | pradient $b'$ in $x - \overline{x} = b' (y - \overline{y})$ : |                               |                                 |              |       |
|                    |                                                 | b' = (47136)                                                  | - 610 × 578/8) / (45212 - 57  | <sup>7</sup> 8 <sup>2</sup> /8) |              |       |
|                    |                                                 |                                                               | = 3063.5 / 3451.5 = 0         | 0.887[6]                        | B1           |       |
|                    | Find regres                                     | sion line of $x$ on $y$ (A.E.F.):                             | x = 610/8 + 0.888 (y - 3)     | 578/8)                          | M1           |       |
|                    |                                                 |                                                               | = 76.2[5] + 0.888 (y          | ·-72·2[5])                      |              |       |
|                    |                                                 |                                                               | or $12.1 + 0.888y$            |                                 | A1 6         |       |
|                    | Use regress                                     | sion line for $x$ on $y$ at $y = 100$ :                       | x = 101 [mins]                | M1                              | A1 2         |       |
|                    | S.R. Usir                                       | ng regression line for $y$ on $x$ at $y =$                    | 100: $x = 105$ [mins]         | (1                              | B1)          |       |
|                    | Find correl                                     | ation coefficient r:                                          |                               |                                 |              |       |
|                    | EITHER:                                         |                                                               | $r^2 = bb' = 0.8580, r$       | = 0.926 M1                      | A1           |       |
|                    | OR:                                             |                                                               | $r = (47136 - 610 \times 57)$ | 78/8) /                         |              |       |
|                    | $\sqrt{\{(49682 - 610^2/8)(45212 - 578^2/8)\}}$ |                                                               |                               |                                 |              |       |
|                    |                                                 |                                                               | $= 3063.5 / \sqrt{3169.5}$    | × 3451·5)                       |              |       |
|                    |                                                 |                                                               | = 0.926                       | (M1 A                           | A1) 2        | [10]  |

|                | Page 9                | Mark Scher                                                                                        |                                                         | Syllabus                         |              | Paper        |       |
|----------------|-----------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|--------------|--------------|-------|
|                |                       | GCE A LEVEL – October                                                                             | November 2012                                           | 9231                             |              | 23           |       |
| Questi<br>Numb |                       | eme Details                                                                                       |                                                         |                                  |              | Part<br>Mark | Total |
| 11 (a)         |                       | vertically at equilibrium with extn. e:<br>Use Newton's Law at general point                      |                                                         | -                                | B1<br>//1 A1 |              |       |
|                |                       |                                                                                                   | [or -mg + 8m]                                           | ag(e-x)/a]                       |              |              |       |
|                | Sir                   | nplify to give $\omega^2$ in $d^2x/dt^2 = -\omega^2 x$ :                                          | $d^2x/dt^2 = -(8g/a)x$ or                               | $\omega^2 = 8g/a$                | A1           |              |       |
|                |                       | (allow stating result without derivat                                                             | ion)                                                    |                                  |              |              |       |
|                | OR: A                 | ssume SHM and find $\omega^2$ from speed                                                          | <i>v</i> when                                           |                                  |              |              |       |
|                | fi                    | rst slack, found from energy as below                                                             | $v: v^2 = \omega^2 \{ (\frac{1}{4}a)^2 - e^2 \}$        |                                  | (M1)         |              |       |
|                |                       |                                                                                                   | $3ga/8 = \omega^2 (a^2/16 - a^2)$                       | <sup>2</sup> /64)                | (A1)         |              |       |
|                |                       |                                                                                                   | $\omega^2 = 8g/a$                                       |                                  | (A1)         |              |       |
|                | Use $x = \frac{1}{2}$ | $\frac{1}{4} a \cos \omega t \text{ or } \frac{1}{4} a \sin \omega t \text{ to find } \omega t$ : | $\omega t = \cos^{-1}(-\frac{1}{2}) \ or \ \frac{1}{2}$ | $\pi + \sin^{-1}(\frac{1}{2})$ N | A1 A1        |              |       |
|                |                       |                                                                                                   | $=2\pi/3$                                               |                                  | A1           |              |       |
|                | Substitute            | $e \omega = \sqrt{(8g/a)}$ :                                                                      | $t = (2\pi/3)\sqrt{(a/8g)}$ A                           | G.                               | A1           | 8            |       |
|                | EITHER:               | Find $v^2$ when first slack from an S                                                             | SHM eqn: $v^2 = \omega^2 (a^2/16)$                      | $(-e^2) = 3ga/8$                 |              |              |       |
|                |                       |                                                                                                   | or $\frac{1}{4}a\omega\sin^2$                           | $2\pi/3 = 3ga/8$ N               | A1 A1        |              |       |
|                | OR: F                 | ind $v^2$ when first slack using energy:                                                          | $\frac{1}{2}mv^2 = \frac{1}{2} 8mg(e + \frac{1}{2})$    | $(4a)^2 / a$                     |              |              |       |
|                |                       |                                                                                                   | $-mg(e + \frac{1}{4})$                                  | <i>a</i> )                       |              |              |       |
|                | (this re              | sult may be used above)                                                                           | $v^2 = 9ga/8 - 3ga/4 =$                                 | 3 <i>ga</i> /8 (M                | [1 A1)       |              |       |
|                | Find furth            | her distance $s_2$ to rest:                                                                       | $2gs_2 = v^2, s_2 = 3a/16$                              | 5 N                              | A1 A1        |              |       |
|                | Find total            | distance:                                                                                         | $\frac{1}{4}a + e + s_2 = \frac{9a}{16}a$               | or $0.562[5]a$ N                 | A1 A1        | 6            | [14]  |

| Ę             | P     | Page 10             | Mark Schen                                      |                                                        | Syllabus                       | Paper        |       |
|---------------|-------|---------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------|--------------|-------|
| L             |       |                     | GCE A LEVEL – October/                          | November 2012                                          | 9231                           | 23           |       |
| Quest<br>Numb |       | Mark Schem          | e Details                                       |                                                        |                                | Part<br>Mark | Total |
| (b)           | )     | Find <i>k</i> by eq | uating area under graph to 1:                   | $k + 3k = 1, \ k = \frac{1}{4}$                        | M1                             | A1           |       |
|               |       | Find $f(x)$ for     | $0 < x \le 2$ and $2 < x \le 5$ :               | $\frac{1}{2}kx = x/8$ and $k = \frac{1}{4}$            | A.G.                           | B1 3         |       |
|               | (i)   | Integrate           | to find $F(x)$ :                                | $F(x) = x^2/16$ (0 $\le$ 2)                            | $x \leq 2$ )                   |              |       |
|               |       |                     |                                                 | $\frac{1}{4}x - \frac{1}{4}$ (2 < .                    | $x \le 5$ ) M1                 | A1           |       |
|               |       | Relate di           | st. fn. G( <i>y</i> ) of <i>Y</i> to <i>X</i> : | $\mathbf{G}(y) = \mathbf{P}(Y < y) = \mathbf{P}(x)$    | $X^2 < y)$                     |              |       |
|               |       | (workin             | g may be omitted)                               | $= P(X < y^{1/2}) = F(y^1)$                            | /2)                            |              |       |
|               |       |                     |                                                 | $= y/16$ and $\frac{1}{4}y^{1/2} - $                   | <sup>1</sup> / <sub>4</sub> M1 | A1           |       |
|               |       | Different           | iate to find g( <i>y</i> ):                     | g(y) = 1/16  or  0.0625                                | $(0 \le y \le 4)$              |              |       |
|               |       | (both re            | sults reqd. for M1)                             | $1/8\sqrt{y}$                                          | $(4 < y \le 25)$ M1            | A1           |       |
|               |       |                     |                                                 | [0 otherwise]                                          |                                | 6            |       |
|               | (ii)  | EITHER:             | Find $E(Y)$ using $\int y g(y) dy$ :            | $E(Y) = (1/16) \int y  dy + (1/16) \int y  dy$         | $(1/8)\int y^{1/2}\mathrm{d}y$ | M1           |       |
|               |       |                     | Integrate and insert limits:                    | $= [y^2/32]_0^4 + [y^{3/2}/12]$                        | $ _{4}^{25}$                   | A1           |       |
|               |       |                     |                                                 | $= \frac{1}{2} + \frac{117}{12} = 10.2$                | 25 A.G.                        | A1           |       |
|               |       | OR:                 | Find E( <i>Y</i> ) using $\int x^2 f(x) dx$ :   | $E(Y) = (1/8) \int x^3 dx + \frac{1}{2}$               | $\sqrt[4]{x^2} dx$ (1)         | M1)          |       |
|               |       |                     | Integrate and insert limits:                    | $= [x^{4}/32]_{0}^{2} + [x^{3}/12]_{2}^{2}$            | 52 (                           | A1)          |       |
|               |       |                     |                                                 | $= \frac{1}{2} + \frac{117}{12} = 10.2$                | 25 <b>A.G.</b> (               | A1) 3        |       |
| (             | (iii) | EITHER:             | Find median $m_x$ of X and                      | $F(m_x) = \frac{1}{4} m_x - \frac{1}{4} = \frac{1}{2}$ | , $m_x = 3$                    |              |       |
|               |       |                     | median $m_y$ of Y (or $\sqrt{m_y}$ ):           | $F(m_y) = \frac{1}{4} m_y^{1/2} - \frac{1}{4} =$       | $1/_2$ , $m_y = 9$ M1          | A1           |       |
|               |       | OR:                 | Show $m_y = m_x^2$ :                            | $\mathbf{P}(Y < m_x^2) = \mathbf{P}(X^2 < m$           | $u_x^2$ )                      |              |       |
|               |       |                     |                                                 | $= \mathbf{P}(X < m_x)$                                | (M1                            | A1) 2        | [14]  |