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1 Let f�r� = r!�r − 1�. Simplify f�r + 1� − f�r� and hence find
2nÐ

r=n+1

r!�r2 + 1�. [5]

2 The roots of the equation x4 − 4x2 + 3x − 2 = 0 are !, ", ' and $; the sum !n + "n + 'n + $n is denoted

by Sn. By using the relation y = x2, or otherwise, show that !2, "2, '2 and $2 are the roots of the

equation

y4 − 8y3 + 12y2 + 7y + 4 = 0. �3�

State the value of S
2

and hence show that

S
8
= 8S

6
− 12S

4
− 72. �3�

3 Prove by mathematical induction that, for every positive integer n,

dn

dxn �ex sin x� = �ï2�nex sin�x + 1
4
n0�. �7�

4 Show that
dy

dx
= −4

3
at the point A �1, −2� on the curve with equation

y3 − 3x2y + 2 = 0,

and find the value of
d2y

dx2
at A. [8]

5 Show that Ó 1

0

xe−x2

dx = 1

2
− 1

2e
. [2]

Let In = Ó 1

0

xne−x2

dx. Show that I
2n+1

= nI
2n−1

− 1

2e
for n ≥ 1. [3]

Find the exact value of I
7
. [3]

6 The linear transformation T : >4 → >4 is represented by the matrix M, where

M =
�−2 5 3 −1

0 1 −4 −2

6 −14 −13 1

! ! −2! −11!

�

and ! is a constant. The null space of T is denoted by K
1

when ! ≠ 0, and by K
2

when ! = 0. Find a

basis for K
1

and a basis for K
2
. [8]

© UCLES 2013 9231/13/M/J/13



3

7 Find the value of the constant , such that ,xe−x is a particular integral of the differential equation

d2y

dx2
+ 5

dy

dx
+ 4y = 6e−x. �4�

Find the solution of the differential equation for which y = 2 and
dy

dx
= 3 when x = 0. [6]

8 The curve C has parametric equations x = 3
2
t2, y = t3, for 0 ≤ t ≤ 2. Find the arc length of C. [4]

Find the coordinates of the centroid of the region enclosed by C, the x-axis and the line x = 6. [7]

9 The square matrix A has an eigenvalue , with corresponding eigenvector e. The non-singular matrix

M is of the same order as A. Show that Me is an eigenvector of the matrix B, where B = MAM−1,

and that , is the corresponding eigenvalue. [3]

Let

A =
`−1 2 1

0 1 4

0 0 2

a
.

Write down the eigenvalues of A and obtain corresponding eigenvectors. [4]

Given that

M =
` 1 0 1

0 1 0

0 0 1

a
,

find the eigenvalues and corresponding eigenvectors of B. [4]

10 Use the identity 2 sin P cos Q � sin�P + Q� + sin�P − Q� to show that

2 sin 1 cos�1 − 1
4
0� � cos�21 − 3

4
0� + 1

ï2
. �3�

A curve has polar equation r = 2 sin 1 cos�1 − 1
4
0�, for 0 ≤ 1 ≤ 3

4
0. Sketch the curve and state the polar

equation of its line of symmetry, justifying your answer. [3]

Show that the area of the region enclosed by the curve is 3
8
�0 + 1�. [6]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

The line l
1

passes through the point A whose position vector is 4i + 7j − k and is parallel to the vector

3i + 2j − k. The line l
2

passes through the point B whose position vector is i + 7j + 11k and is parallel

to the vector i − 6j − 2k. The points P on l
1

and Q on l
2

are such that PQ is perpendicular to both l
1

and l
2
. Find the position vectors of P and Q. [8]

Find the shortest distance between the line through A and B and the line through P and Q, giving your

answer correct to 3 significant figures. [6]

OR

Show the cube roots of 1 on an Argand diagram. [1]

Show that the two non-real cube roots can be expressed in the form 7 and 72, and find these cube

roots in exact cartesian form x + iy. [3]

Evaluate the determinant ~
1 37 272

372 2 7
27 72 3

~

. �3�

It is given that Ï = �4ï3�
�
cos 4

3
0 + i sin 4

3
0� − 4

�
cos 11

6
0 + i sin 11

6
0�. Express Ï in the form

r�cos 1 + i sin 1�, giving exact values for r and 1. [5]

Hence find the cube roots of Ï in the form r�cos 1 + i sin 1�. [2]
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