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1 Given that

uk = 1��2k − 1� −
1��2k + 1� ,

express
nÐ

k=13

uk in terms of n. [4]

Deduce the value of
∞Ð

k=13

uk. [1]

2 A curve C has parametric equations

x = et cos t, y = et sin t, for 0 ≤ t ≤ 1
2
0.

Find the arc length of C. [6]

3 It is given that ur = r × r! for r = 1, 2, 3, à . Let Sn = u
1
+ u

2
+ u

3
+à + un. Write down the values

of

2! − S
1
, 3! − S

2
, 4! − S

3
, 5! − S

4
. �2�

Conjecture a formula for Sn. [1]

Prove, by mathematical induction, a formula for Sn, for all positive integers n. [4]

4 A curve C has equation y = 2x2 + x − 1

x − 1
. Find the equations of the asymptotes of C. [3]

Show that there is no point on C for which 1 < y < 9. [4]

5 Find the value of a for which the system of equations

x − y + 2Ï = 4,

x + ay − 3Ï = b,

x − y + 7Ï = 13,

where a and b are constants, has no unique solution. [3]

Taking a as the value just found,

(i) find the general solution in the case b = −5, [4]

(ii) interpret the situation geometrically in the case b ≠ −5. [1]

6 Use de Moivre’s theorem to show that

cos 51 � cos1�16 sin41 − 12 sin21 + 1�. �5�

By considering the equation cos 51 = 0, show that the exact value of sin2
�

1
10
0� is

3 − ï5

8
. [4]
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7 Let In = Ó 1

0

�1 − x�nex dx. Show that, for all positive integers n,

In = nIn−1
− 1. �3�

Find the exact value of I
4
. [4]

By considering the area of the region enclosed by the x-axis, the y-axis and the curve with equation

y = �1 − x�4ex in the interval 0 ≤ x ≤ 1, show that

65
24

< e < 11
4

. �3�

8 A circle has polar equation r = a, for 0 ≤ 1 < 20, and a cardioid has polar equation r = a�1 − cos 1�,
for 0 ≤ 1 < 20, where a is a positive constant. Draw sketches of the circle and the cardioid on the

same diagram. [3]

Write down the polar coordinates of the points of intersection of the circle and the cardioid. [2]

Show that the area of the region that is both inside the circle and inside the cardioid is

�
5
4
0 − 2

�
a2. �6�

9 Given that

x
d2y

dx2
+ �2x + 2�dy

dx
+ �2 − 3x�y = 10e2x

and that v = xy, show that

d2v

dx2
+ 2

dv

dx
− 3v = 10e2x. �4�

Find the general solution for y in terms of x. [7]

10 The line l
1

is parallel to the vector i − 2j − 3k and passes through the point A, whose position vector

is 3i + 3j − 4k. The line l
2

is parallel to the vector −2i + j + 3k and passes through the point B,

whose position vector is −3i − j + 2k. The point P on l1 and the point Q on l2 are such that PQ is

perpendicular to both l
1

and l
2
. Find

(i) the length PQ, [5]

(ii) the cartesian equation of the plane � containing PQ and l
2
, [4]

(iii) the perpendicular distance of A from �. [3]
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11 Answer only one of the following two alternatives.

EITHER

The roots of the quartic equation x4 + 4x3 + 2x2 − 4x + 1 = 0 are !, ", ' and $. Find the values of

(i) ! + " + ' + $, [1]

(ii) !2 + "2 + '2 + $2, [2]

(iii)
1

! + 1

" + 1

' + 1

$ , [2]

(iv)
!
"'$ + "

!'$ + '
!"$ + $

!"' . [2]

Using the substitution y = x + 1, find a quartic equation in y. Solve this quartic equation and hence

find the roots of the equation x4 + 4x3 + 2x2 − 4x + 1 = 0. [7]

OR

The square matrix A has , as an eigenvalue with e as a corresponding eigenvector. Show that if A is

non-singular then

(i) , ≠ 0, [2]

(ii) the matrix A−1 has ,−1 as an eigenvalue with e as a corresponding eigenvector. [2]

The 3 × 3 matrices A and B are given by

A =
`−2 2 −4

0 −1 5

0 0 3

a
and B = �A + 3I�−1,

where I is the 3 × 3 identity matrix. Find a non-singular matrix P, and a diagonal matrix D, such that

B = PDP−1. [10]
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