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1 The quartic equation x4 − px2 + qx − r = 0, where p, q and r are real constants, has two pairs of equal

roots. Show that p2 + 4r = 0 and state the value of q. [6]

2 The curve C has polar equation r = e41 for 0 ≤ 1 ≤ !, where ! is measured in radians. The length of

C is 2015. Find the value of !. [6]

3 Prove by mathematical induction that, for all positive integers n,

nÐ
r=1

1

�2r�2 − 1
= n

2n + 1
. [6]

State the value of

∞Ð
r=1

1

�2r�2 − 1
. [1]

4 Use the formula for tan�A − B� in the List of Formulae (MF10) to show that

tan−1�x + 1� − tan−1�x − 1� = tan−1

@
2

x2

A
. �3�

Deduce the sum to n terms of the series

tan−1

@
2

12

A + tan−1

@
2

22

A + tan−1

@
2

32

A +à . �4�

5 Let In = Ô
1
2
0

0

sin 2n1
cos1 d1, where n is a non-negative integer.

(i) Use the identity sin P + sin Q � 2 sin 1
2
�P + Q� cos 1

2
�P − Q� to show that

In + In−1
= 2

2n − 1
, for all positive integers n. �5�

(ii) Find the exact value of Ô
1
2
0

0

sin 81
cos1 d1. [4]

6 Let Ï = cos 1 + i sin 1. Use the binomial expansion of �1 + Ï�n, where n is a positive integer, to show

that @
n

1

A
cos1 + @

n

2

A
cos 21 +à + @

n

n

A
cos n1 = 2n cosn

�
1
2
1� cos

�
1
2
n1� − 1. �7�

Find @
n

1

A
sin 1 + @

n

2

A
sin 21 +à + @

n

n

A
sin n1. �2�

7 The curve C has equation x2 + 2xy − 4y2 + 20 = 0. Show that if the tangent to C at the point �x, y� is

parallel to the x-axis then x + y = 0. [3]

Hence find the coordinates of the stationary points on C, and determine their nature. [7]
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8 A line, passing through the point A �3, 0, 2�, has vector equation r = 3i + 2k + ,�2i + j − 2k�. It meets

the plane �, which has equation r.�i + 2j + k� = 3, at the point P. Find the coordinates of P. [3]

Write down a vector n which is perpendicular to �, and calculate the vector w, where

w = n × �2i + j − 2k�. �3�

The point Q lies in � and is the foot of the perpendicular from A to �. Use the vector w to determine

an equation of the line PQ in the form r = u + -v. [4]

9 Find the particular solution of the differential equation

d2x

dt2
− 3

dx

dt
− 10x = 2 sin t − 3 cos t,

given that, when t = 0, x = 3.3 and
dx

dt
= 0.9. [11]

10 The curve C has equation y = 4x2 − 3x

x2 + 1
. Verify that the equation of C may be written in the form

y = −1

2
+ �3x − 1�2

2�x2 + 1�
and also in the form y = 9

2
− �x + 3�2

2�x2 + 1�
. [3]

Hence show that −1
2
≤ y ≤ 9

2
. [2]

Without differentiating, write down the coordinates of the turning points of C. [2]

State the equation of the asymptote of C. [1]

Sketch the graph of C, stating the coordinates of the intersections with the coordinate axes and the

asymptote. [3]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

The linear transformation T : >4 → >4 is represented by the matrix M, where

M =
�

1 2 3 4

1 −1 2 3

1 −3 3 5

1 4 2 2

�

.

The range space of T is denoted by V.

(i) Determine the dimension of V. [3]

(ii) Show that the vectors

�
1

1

1

1

�

,

�
2−1−3

4

�

,

�
3

2

3

2

�

are a basis of V. [5]

The set of elements of >4 which do not belong to V is denoted by W.

(iii) State, with a reason, whether W is a vector space. [1]

(iv) Show that if the vector

�
x

yÏ
t

�

belongs to W then x + y ≠ Ï + t. [5]

OR

One of the eigenvalues of the matrix M, where

M =
` 3 −4 2−4 ! 6

2 6 −2

a
,

is −9. Find the value of !. [3]

Find

(i) the other two eigenvalues, ,
1

and ,
2
, of M, where ,

1
> ,

2
, [5]

(ii) corresponding eigenvectors for all three eigenvalues of M. [3]

It is given that x = ae1 + be2, where e1 and e2 are eigenvectors of M corresponding to the eigenvalues,
1

and ,
2

respectively, and a and b are scalar constants. Show that Mx = pe
1
+ qe

2
, expressing p and

q in terms of a and b. [3]
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