

CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Ρ	age 2	2	Mark Scheme	Syllabus	Paper
			Cambridge International AS/A Level – May/June 2015	9702	23
1	(a)	150) or 1.5×10^2 Gm	A	I [1]
	(b)	dist	cance = $2 \times (42.3 - 6.38) \times 10^6$ (= 7.184×10^7 m)	C	1
		(tim	ne =) $7.184 \times 10^7 / (3.0 \times 10^8) = 0.24 (0.239)$ s	A1	[2]
	(c)	uni	ts of pressure <i>P</i> : kgms ⁻² /m ² = kgm ⁻¹ s ⁻²	М	1
		uni	ts of density ρ : kg m ⁻³ and speed v: m s ⁻¹	М	1
			plification for units of C: $C = v^2 \rho / P$ units: $(m^2 s^{-2} kg m^{-3}) / kg m^{-1} s^{-2}$ I cancelling to give no units for C	A	I [3]
	(d)	ene	ergy and power (both underlined and no others)	A	I [1]
	(e)	(i)	vector triangle of correct orientation	М	1
			three arrows for the velocities in the correct directions	A	I [2]
		(ii)	length measured from scale diagram 5.2 ± 0.2 cm or components o boat speed determined parallel and perpendicular to river flow	f C ²	1
			velocity = 2.6 m s ⁻¹ (allow $\pm 0.1 \text{m s}^{-1}$)	A	1 [2]
2	(a)	<u>cor</u>	stant rate of increase in velocity/acceleration from $t = 0$ to $t = 8$ s	Bŕ	1
			<u>estant</u> deceleration from $t = 8 \text{ s}$ to $t = 16 \text{ s}$ or constant rate of increase ocity in the opposite direction from $t = 10 \text{ s}$ to $t = 16 \text{ s}$	in B1	I [2]
	(b)	(i)	area under lines to 10 s	C	1
			(displacement =) (5.0 × 8.0) / 2 + (5.0 × 2.0) / 2 = 25 m or $\frac{1}{2}$ (10.0 × 5.0) = 25 m	A	I [2]
		(ii)	a = (v - u)/t or gradient of line	C	1
			= (-15.0 -5.0) / 8.0		
			$= (-) 2.5 \mathrm{ms^{-2}}$	A1	[2]
		(iii)	$KE = \frac{1}{2}mv^2$	C	1
			$= 0.5 \times 0.4 \times (15.0)^2 = 45 \text{ J}$	A	I [2]
	(c)	(dis	stance =) 25 (m) (= $ut + \frac{1}{2}at^2$) = 0 + $\frac{1}{2} \times 2.5 \times t^2$	C	1
		(<i>t</i> =	= 4.5 (4.47)s therefore) time to return = 14.5s	A1	I [2]

		3	Mark Scheme	Syllabus	Paper
			Cambridge International AS/A Level – May/June 2015	9702	23
3	(a)	(po	wer =) work done / time (taken) or rate of work done	A1	l [1]
	(b)	(i)	F - R = ma	C	1
			$F = 1500 \times 0.82 + 1200$	C	1
			= 2400 (2430)N	A 1	[3]
		(ii)	P = Fv	C	1
			= (2430 × 22) = 53000 (53500) W	A1	[2]
	(c)	(th∉ car or	l by		
		sug	gestion in terms of power produced by car and power sted to overcome resistive force	B1	l [1]
4	(a)	(i)	diameter and extension: micrometer (screw gauge) or digital calipe	rs B1	I
			length: tape measure or metre rule	B1	l
			load: spring balance or Newton meter	B1	[3]
		(ii)	to reduce the effect of random errors or to plot a graph to check for error in measurement of extension or to see if limit of proportionalit exceeded		[1]
	(b)	plo	t a graph of <i>F</i> against <i>e</i> and determine the gradient	B1	I
		E	= (gradient $\times l$)/[$\pi d^2/4$]	B1	[2]
5	(a)	R :	= <i>pl / A</i>	C	1
		:	= (5.1 × 10 ⁻⁷ × 0.50) / π (0.18 × 10 ⁻³) ² = 2.5 (2.51) Ω	M	1 [2]
	(b)	(i)	resistance of CD = 8 × resistance of AB = 20 (Ω)	C	1
			circuit resistance = $[1/5.0 + 1/20]^{-1} = 4.0(\Omega)$	C	1
			current = V/R = 6.0/4.0	C	1
			= 1.5 A	A1	[4]
		(ii)	power in AB = $I^2 R$ or power = V^2/R	C	1
			$= (1.2)^2 \times 2.5 = 3.6 \text{ W}$ $= (3.0)^2 / 2.5 = 3.6 \text{ W}$.6W A1	[2]

Page 4		Mark Scheme		Paper
		Cambridge International AS/A Level – May/June 2015	9702	23
	(iii)	potential drop A to M = $1.25 \times 1.2 = 1.5 V$	N	11
		potential drop C to N = 3.0 V p.d. MN = 1.5 V	A	.1 [2]
6	(a) (i)	coherent: constant phase difference	В	1
		interference is the (overlapping of waves and the) sum of/addition of displacement of two waves	of B	1 [2]
	(ii)	wavelength = 3.2 m (allow $\pm 0.05 \text{ m}$)	N	11
		$f (= v / \lambda = 240 / 3.2) = 75 \text{Hz}$	A	.1 [2]
	(iii)	90° (allow ± 2°) or $\pi/2$ rad	А	.1 [1]
	(iv)	sketch has amplitude 3.0 ± 0.1 cm	Ν	11
		correct displacement values at previous peaks to produce correct s	hape A	.1 [2]
	(b) (i)	$\lambda = ax/D$	C	:1
		$x = (546 \times 10^{-9} \times 0.85) / 0.13 \times 10^{-3} (= 3.57 \times 10^{-3} \text{ m})$	С	;1
		AB = 8.9 (8.93) × 10 ⁻³ m	A	.1 [3]
	(ii)	shorter wavelength for blue light so separation is less	В	1 [1]
7	(a) (i)	(rate of decay) not affected by any external factors or changes in temperature and pressure etc.	В	1 [1]
	(ii)	two protons and two neutrons	В	1 [1]
	(b) (i)	(total) mass before decay/on left-hand side is greater than (total) m on right-hand side/after the decay	ass N	11
		the difference in mass is released as kinetic energy of the products	A	.1 [2]
		(may also be some γ radiation) (to conserve mass-energy)		
	(ii)	$(6.2 \times 10^6 \times 1.6 \times 10^{-19}$ =) 9.9(2) × 10^{-13} J	A	.1 [1]