UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

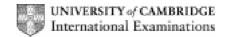
International General Certificate of Secondary Education

MARK SCHEME for the May/June 2006 question paper

0620 CHEMISTRY

0620/03 Paper 3, maximum raw mark 80

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.


All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 1			Scheme	Syllabus		
			IGCSE – M	ay/June 2006	0620	03	
1 (a)	used as comore than Four boxe Four boxe	n one oxida es ticked tha es ticked tha	tion state at include three at include two co at include one co	correct choices [2] orrect choices [1] orrect choices [0]			[1] [1] [1]
(b)	(i) period	d 4					[1]
	(ii) 26 <i>p</i> a	and 30 <i>n</i>					[1]
(c)	(i) limes	tone					[1]
	(ii) slag						[1]
	(iii) iron o	ore					[1]
(d)		r provide he arbon mon					[1] [1]
(e)	mild steel stainless			nery or fridges etc. nical plants etc.			[1] [1]
						[TOTAI	L = 12]
2 (a)		reactive X aresponses [and least Y [1] C 0]	DNLY			[2]
(b)	magnesiu copper	ım	W Y				[1] [1]
(c)	or mi		burning splint r and ignited goo lint	es pop			[1]
	unive or pH or hig	l paper goe gh pH, acce	or goes blue es blue ept 13, 14				[1]
	or wit NOT ONL	th metallic o litmus			e result,		[1]
	(iii) Group	p 1					[1]
	(iv) electr	rolysis D molten					[1] [1]
						[TOTAI	L = 101

Page 2		e 2	Mark Scheme		Syllabus	Paper	
			ļ	GCSE – May/June 2006	0620	03	
(a)	amr	nonia ^r	10				
(α,			ric acid 1				
			droxide 13				
		anoic a					
		correct					
	Two	corre	ct [1]				
(b)			g acid bulb brigh	ter			
			of bubbles				
	OR	corres	ponding commer	nts for weak acid			
(c)			T hydrogen ion				
			ditional on protor				
	Oni	y way i	or [2] is proton a	na H			
(d)	(i)	CaO a	and MgO				
	(ii)	CO ₂ a	nd SO ₂				
	(iii)	A <i>l</i> ₂ O ₃					
	(iv)	СО					
	(,						
						[TOTAI	_ =
(a)			s around 1 Ge				
	Loo	ks tetra	ahedral or stated	to be			
(b)	(i)	Graph	ite has layers				
(-)			that can move/s	•			
		or we	ak bonds betwee	n layers			
		Graph	ite has delocalis	ed/free/mobile electrons			
	(ii)	prope	rty <u>and</u> use				
		soft		lubricant or pencils			
		OR go	ood conductor	electrodes or in electric motors			
(c)	(i)	CO ₂ a	nd SiO ₂ or XO ₂				
	/ii\	CO _o m	nolecular or simn	le molecules or simple covalent			
	(")		nacromolecular c				
		J. J_ 1					

[TOTAL = 10]

L		IGCSE – May/June 2006	0620	03
(a)	(i)	Burn sulphur in air (or oxygen)		
	(ii)	as a <u>bleach</u>		
	(iii)	kill bacteria/micro-organisms NOT prevents food going bad or rotten or decaying		
(b)	(i)	decrease		
	(ii)	exothermic COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for ex The forward reaction is not favoured by an increase in temp so it is exothermic (rather than endothermic)	•	
	(iii)	Low enough for good yield High enough for (economic) rate Any similar explanation will be awarded the mark NOT just that it is the optimum temperature		
	(iv)	bubble into (conc) sulphuric acid add water NOT consequential		
		1401 consequential		
		NOT consequential		ATOT]
(a)	(i)	Any bond that is broken C-H or O=O		АТОТ]
(a)	(i)			АТОТ]
(a)		Any bond that is broken C-H or O=O Bond that is formed C=O or O-H		АТОТ]
(a)	(ii)	Any bond that is broken C-H or O=O Bond that is formed C=O or O-H Do not insist on double bonds More energy is released forming bonds than is used breaking bonds For just - more energy released than used [1] For - energy is released forming bonds and it is used		АТОТ]
	(ii) (i)	Any bond that is broken C-H or O=O Bond that is formed C=O or O-H Do not insist on double bonds More energy is released forming bonds than is used breaking bonds For just - more energy released than used [1] For - energy is released forming bonds and it is used breaking bonds [1] U	,	[TOTA
	(ii) (i) (ii)	Any bond that is broken C-H or O=O Bond that is formed C=O or O-H Do not insist on double bonds More energy is released forming bonds than is used breaking bonds For just - more energy released than used [1] For - energy is released forming bonds and it is used breaking bonds [1] U 235 treatment of cancer, autoradiographs, tracer, sterilising food	,	[TOTA

Mark Scheme

Syllabus

Paper

Page 3

	Page 4					Syllabus	Paper		
				IGCSE -	– May/June 200	5	0620	03	
	(iii)		icial protection Ivanising	or stop i	ron/steel rusting)			
(d)	(i)	pink or purple to colourless or decolourised NOT red NOT clear							
	(ii)		$2e = I_2$ anced ONLY [1]					
								ATOT]	'F = .
(a)	(i)	any co	orrect equation	ı					
	(ii)		ural formulae t clobutane	rom but-1	I-ene, but-2-ene Any TWO	e, methylpropen	ne		
(b)	(i)	light o	or 200°C or lea	ad tetraetl	hyl				
	(ii)		itution or photo ogenation	ochemica	l or chlorinatior	or free radical			
	(iii)			nlorobuta	ne, dichlorobuta	ane etc.			
		Any T	WO						
(c)	(i)	CH ₃ C	H ₂ CH ₂ OH or (CH₃CH(O	H)CH ₃				
	(ii)		H(Br)CH₂Br 1,3-dibromopr	opane					
		es of C I seq	CH ₃ -CH = CH ₂	reacted =	= 1.4/42 = 0.033	3			
	max	kimum	moles of CH ₃ -	CH(I)-CH	l₃ that could be	formed = 0.033			
	max acc	ept 170	$0 \times 0.033 = 5.6$	61 and 17	that could be f 0 x 0.033333 =				
	pero Do a se	centage not ma	attempt to ar	7 x 100 = ntly to a	70.5% series of smal	l integers. The n consequenti			
								[TOTA	'F = .
						[For paper 12			