Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/03

Paper 3

May/June 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

1

Iror	ı is a	transition element.				
(a)	Wh	ich of the following sta	itements about	transition ele	ements are correct?	
	Ticl	three boxes.				
	The	metals are highly col	oured e.g. yello	ow, green, blu	ue.	
	The	e metals have low mel	ting points.			
	The	eir compounds are hig	hly coloured.			
	The	eir compounds are colo	ourless.			
	The	e elements and their co	ompounds are	often used as	s catalysts.	
	The	y have more than one	e oxidation stat	e.		
						[3]
(b)	(i)	In which Period in the	e Periodic Tabl	e is iron to be	e found?	
						[1]
	(ii)	Use the Periodic Taneutrons in one atom		ut the numb	per of protons and t	ne number of
		number of protons =		numbe	r of neutrons =	[1]
(c)		is extracted in a blas ormed in the extraction		e list below g	ives some of the sub	stances used
	ca	rbon monoxide	coke	iron ore	limestone	slag
	(i)	Which substance is a	n mineral conta	ining largely	calcium carbonate?	
						[1]
	(ii)	Which substance is f	ormed when in	npurities in th	e ore react with calci	um oxide?
						[1]
	(iii)	Which substance is a	ilso called hem	natite?		
						[1]

(d)	State two functions of the coke used in the blast furnace.	
	[2]	
(e)	Most of the iron is converted into mild steel or stainless steel. Give one use for each.	
	mild steel	
	stainless steel [2]	

2 Some reactions of metals W, X, Y and Z are given below.

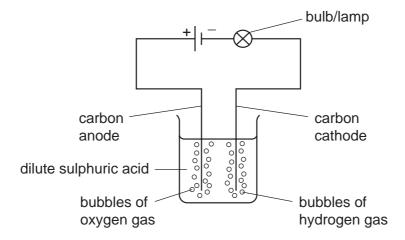
metal	reaction with water	reaction with dilute hydrochloric acid
w	A few bubbles form slowly in cold water.	Vigorous reaction. Gas given off.
X	Vigorous reaction. Metal melts. Gas given off.	Explosive reaction. Should not be attempted.
Y	No reaction.	No reaction.
Z	Does not react with cold water. Hot metal reacts with steam.	Steady fizzing.

(a)	Arrange these	metals in order of reactivity.	
	most reactive		
	least reactive		[2]
(b)	Which of these	e metals could be	
	(i) magnesiur	n,	
			[1]
	(ii) copper?		
			[1]

((c)	The e	guation	for the	reaction	of X v	with	cold	water	is (aiven	below
١	v	11166	qualion	וטו נווכ	Teaction	OI A	VVILII	COIG	water	ıo y	giveii	DCIOW

$$2\mathbf{X}(s) + 2H_2O(I) \longrightarrow 2\mathbf{X}OH(aq) + H_2(g)$$

(i)	Describe the test you would use to show that the gas evolved is hydrogen.	
		 [1]
(ii)	How could you show that the water contained a compound of the type X OH?	
		 [2]
(iii)	In which group of the Periodic Table does metal X belong?	
		[1]
(iv)	The ore of ${\bf X}$ is its chloride. Suggest how metal ${\bf X}$ could be extracted from chloride.	its
		[2]


3 (a) Four bottles were known to contain aqueous ammonia, dilute hydrochloric acid, sodium hydroxide solution and vinegar, which is dilute ethanoic acid. The bottles had lost their labels. The pH values of the four solutions were 1, 4, 10 and 13.

Complete the table.

solution	рН
aqueous ammonia	
dilute hydrochloric acid	
sodium hydroxide solution	
vinegar	

[2]

(b) The following apparatus was set up to investigate the electrical conductivity of dilute acids.

Dilute sulphuric acid is a strong acid. If it was replaced by a weak acid, what **two** differences in the observations would you expect to make?

(c) When nitric acid is added to water the following reaction occurs.

$$HNO_3 + H_2O \longrightarrow NO_3^- + H_3O^+$$

Give the name and the formula of the particle which is transferred from nitric acid to water.

name _____

formula [2]

(d)	Thi	s question	is concerned with th	ne following oxides.
			aluminium oxide	Al_2O_3
			calcium oxide	CaO
			carbon dioxide	CO ₂
			carbon monoxide	СО
			magnesium oxide	MgO
			sulphur dioxide	SO ₂
	(i) (ii)	sodium h	nydroxide?	will react with hydrochloric acid but not with aqueous [1] vill react with aqueous sodium hydroxide but not with
				[1]
((iii)		the above oxides was described the state of	vill react both with hydrochloric acid and with aqueous
				[1]
((iv)		f the above oxides sodium hydroxide?	s will react neither with hydrochloric acid nor with
				[1]

ca si	rst three elements in Group IV are arbon, licon, ermanium.
	ne element germanium has a diamond-type structure. Describe the structure of ermanium. A diagram is acceptable.
	[2]
(b) U	nlike diamond, graphite is soft and is a good conductor of electricity.
(i	Explain why graphite has these properties.
(ii) Give a use of graphite that depends on one of these properties.
(11)	
	use [1]
	arbon dioxide and silicon(IV) oxide have similar formulae but different types of ructure.
(i) Give the formulae of these oxides.
	[1]
(ii) How are their structures different?

[1]

© UCLES 2006 0620/03/M/J/06

which contains two germanium atoms.

5 Sulphuric acid is made by the Contact process in the following sequence of reactions.

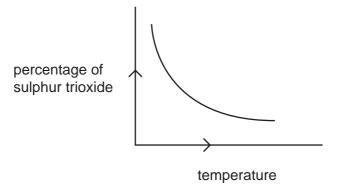
$sulphur \rightarrow sulphur \ dioxide \rightarrow sulphur \ trioxide \rightarrow sulphuric \ acid$

(a) (i) How is sulphur dioxide made from sulphur?

______[1

(ii) Sulphur dioxide has other uses. Why is it used in the manufacture of paper?

[1]


(iii) How does it preserve food?

[1]

(b) The equation for a stage of the Contact process is

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

The percentage of sulphur trioxide in the equilibrium mixture varies with temperature.

(i) How does the percentage of sulphur trioxide in the equilibrium mixture vary as the temperature increases? Circle the correct answer.

increases stays the same decreases [1]

(ii) Is the forward reaction in the equilibrium $2SO_2 + O_2 \rightleftharpoons 2SO_3$ exothermic or endothermic? Give a reason for your choice.

[2]

(iii)	Explain, mentioning both rate and percentage yield, why the temperature used the Contact process is 450°C.	l in
		[2]
(iv)	Describe how the sulphur trioxide is changed into concentrated sulphuric acid.	
		[2]

6 (a) Exothermic reactions produce heat energy.

An important fuel is methane, natural gas. The equation for its combustion is as follows.

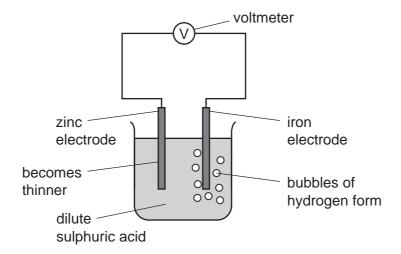
(i) In chemical reactions bonds are broken and new bonds are formed. Using this reaction give an example of

a bond that is broken,	

a bond that is formed. [2]

(ii) Explain, using the idea of bonds forming and breaking, why this reaction is exothermic, that is it produces heat energy.

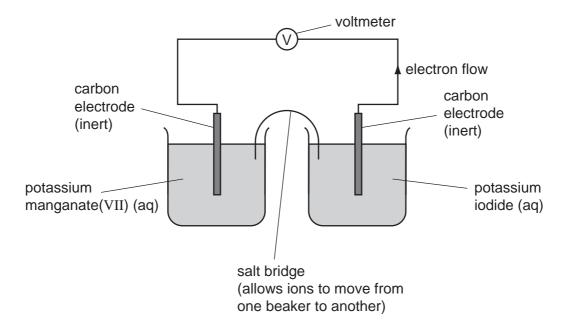
(b) Some radioactive isotopes are used as nuclear fuels.


(i) Give the symbol and the nucleon number of an isotope that is used as a nuclear fuel.

[2]

(ii) Give another use of radioactive isotopes.

______[1]


- (c) Cell reactions are both exothermic and redox. They produce electrical energy as well as heat energy.
 - (i) The diagram shows a simple cell.

Which substance in this cell is the reductant and which ion is the oxidant?

	reductant	
	oxidant	[2]
(ii)	How could the voltage of this cell be increased?	
		[1]
(iii)	What is the important large scale use, relating to iron and steel, of this type of reaction?	cel
		[1]

(d) Cells can be set up with inert electrodes and the electrolytes as oxidant and reductant.

The potassium manganate(VII) is the oxidant and the potassium iodide is the reductant.

(i)	Describe the colour change that would be observed in the left hand beaker.	
(ii)	Write an ionic equation for the reaction in the right hand beaker.	[2]
		[2]

[2]

[2]

7	The fractional distillation of crude oil usually produces large quantities of the heavier
	fractions. The market demand is for the lighter fractions and for the more reactive alkenes.
	The heavier fractions are cracked to form smaller alkanes and alkenes as in the following
	example.

$$C_8H_{18}$$
 \longrightarrow C_4H_{10} + C_4H_8 octane butane butenes

(a)	(i)	Write a	different	equation	for the	cracking	of octane
-----	-----	---------	-----------	----------	---------	----------	-----------

$$C_8H_{18} \longrightarrow +$$
 [1]

(ii) The cracking of octane can produce isomers with the molecular formula C_4H_8 . Draw the structural formulae of two of these isomers.

(b)	(i)	Give the essential condition for the reaction between chlorine and butane.	
	<i>(</i> ::)	What have a face at face in this O	[1]
	(ii)	What type of reaction is this?	[1]
((iii)	This reaction produces a mixture of products. Give the names of two product that contain four carbon atoms per molecule.	ts

and _____and

(c)	Alkenes are more reactive than alkanes and are used to make a range of organic chemicals. Propene, CH_3 – CH = CH_2 , is made by cracking. Give the structural formula of the addition product when propene reacts with the following.	
	(i) water	
	(ii) bromine	
(d)	[1] Propene reacts with hydrogen iodide to form 2-iodopropane.	
	CH ₃ −CH=CH ₂ + HI CH ₃ −CHI−CH ₃	
	1.4 g of propene produced 4.0 g of 2-iodopropane.	
	Calculate the percentage yield.	
	moles of CH ₃ –CH=CH ₂ reacted =	•
	maximum moles of CH ₃ –CHI–CH ₃ that could be formed =	
	mass of one mole of CH_3 – CHI – CH_3 = 170 g	
	maximum mass of 2- iodopropane that could be formed =	
	percentage yield% [4]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

								Gro	Group								
_	=											=	2	>		II/	0
							-										4
							I										무
							Hydrogen 1										Helium 2
7	6											+	12	14	16	19	20
=	Be											ш	ပ	z	0	ш	Ne
3 Lithium	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg											Ν	S	۵	တ	10	Ā
Sodium 11	Magnesium 12	-										Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
39	40	45	48	51	52	22	99	69	29	64		20	73	75	62		84
×	င္မ	လွ	j	>	ဝံ	Mn	Fe	ပိ	Z	చె	Zu	Ga	Ge	As	Se	Ā	궃
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	lron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32		Selenium 34	Bromine 35	Krypton 36
85	88	88	91	93	96		101	103	106	108	112	115	119		128	127	131
Rb		>		Q Q	Mo	ည	Ru		Pd	Ag	ပ္ပ	П	Sn	Sb	Тe	_	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209			
S		La	Ŧ	Та	>	Re	os O	Į.	ቷ	Αn	Ę	11	Pp	Ξ		Ą	Ru
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
ı	226	227															
Francing.	Kadija Ka	Activiim															
87	88	86	'														
*58-71	*58-71 anthanoid series	id ceries		140	141	144		150	152	157	159	162	165	167	169	173	175
190-105	90-7 Lantinariola series	יים שלידים		ဝီ		PN	Pm	Sm	Ш	g d	₽ L	۵	운	ш	Tm		2
2				Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
	æ	a = relative atomic mass	ic mass	232		238											
Key	×	X = atomic symbol	loc	두	Ра		Ν	Pu	Am	Cm	쓢			Fm	Md		۲
	q	b = proton (atomic) number		Thorium 90	Protactinium 91	Uranium 92	Neptunium 93		Americium 95		Berkelium 97	Californium 98	ε	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103
l			_	3							;						

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).