Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

0620/02

Paper 2

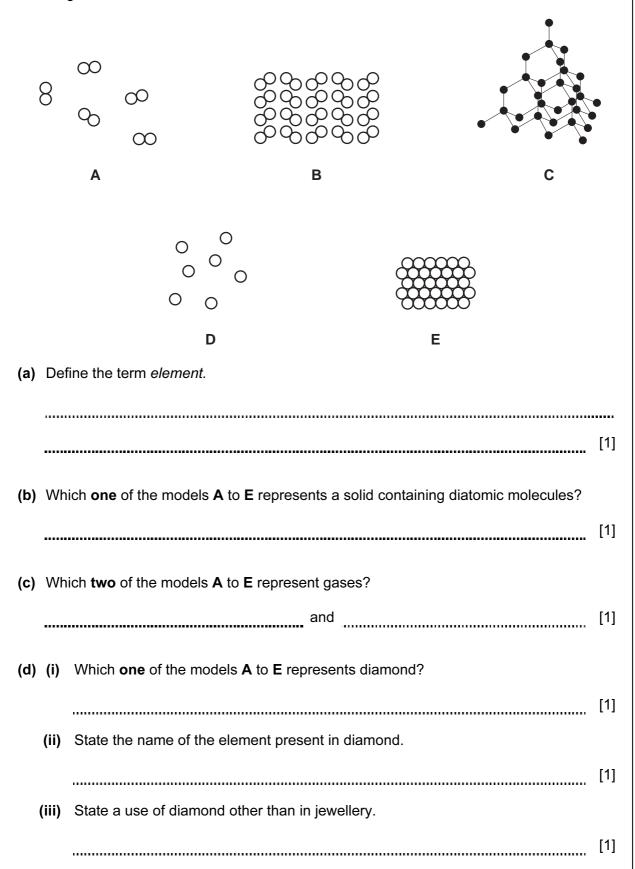
May/June 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

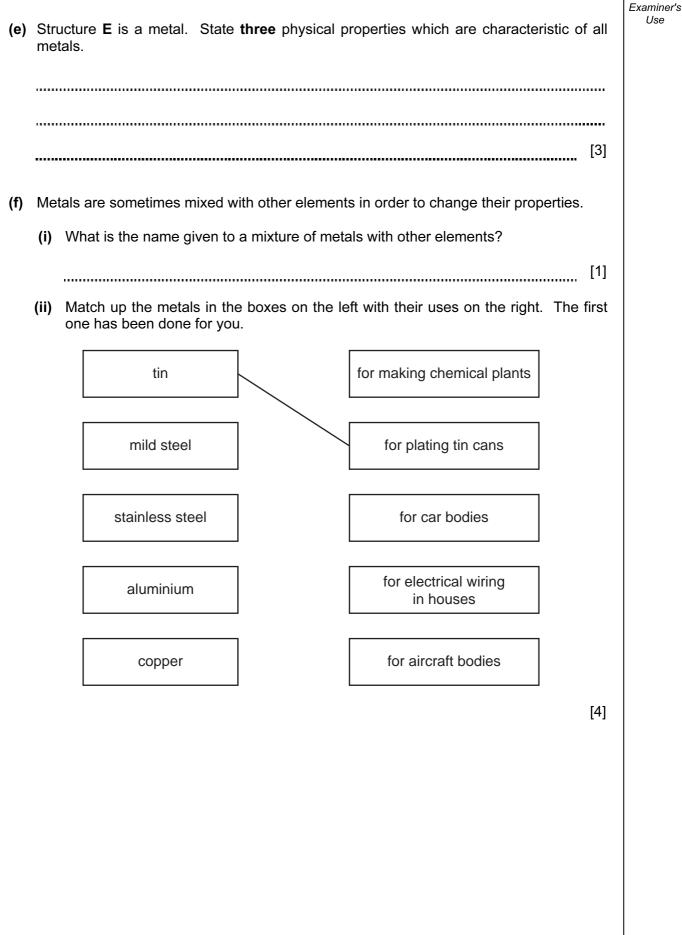
Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.


Answer **all** questions. A copy of the Periodic Table is printed on page 16.

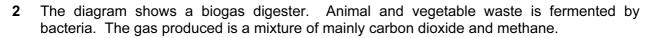
At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

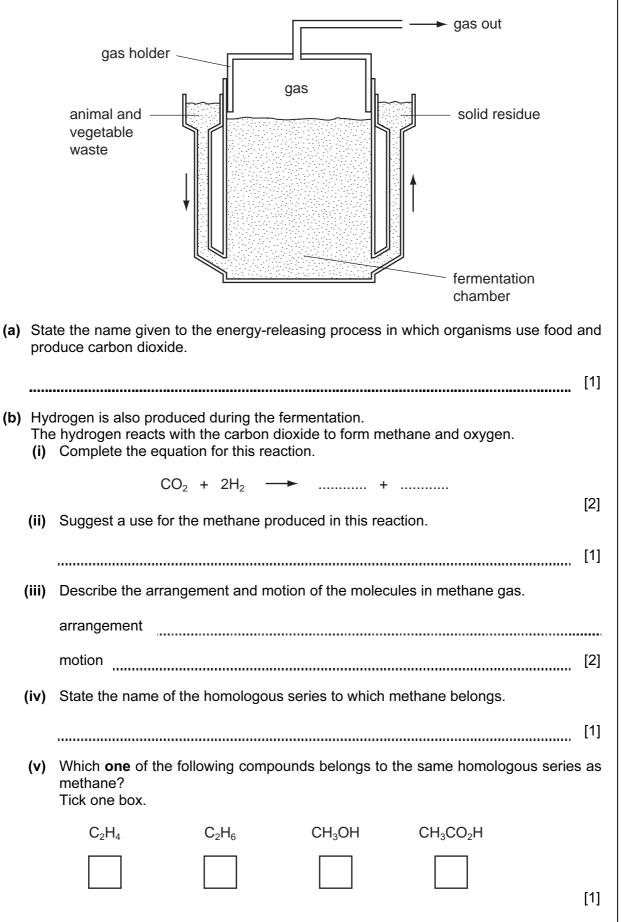
For Examin	er's Use
1	
2	
3	
4	
5	
6	
Total	

This document consists of **15** printed pages and **1** blank page.



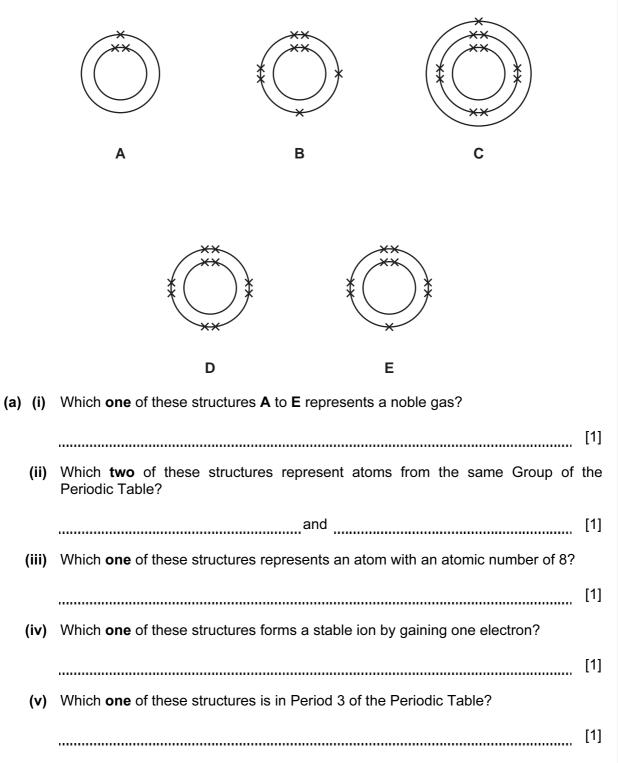
1 The diagram shows models of various elements.


2


For Examiner's Use

3

For



0620/02/M/J//06

(c)	Which one of the foll	owing equations A, B, C or D describes fermentation?	
	А	$CH_4 + H_2O \longrightarrow CO + 3H_2$	
	В	$C_6H_{12}O_6 + 6O_2 \longrightarrow 6H_2O + 6CO_2$	
	С	$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$	
	D	$C_6H_{14} \longrightarrow C_4H_{10} + C_2H_4$	
			[1]
(d)	Many of the reactions	s occurring in the biogas digester are catalysed by enzymes.	
	(i) Suggest where t	he enzymes come from.	
			[1]
	(ii) Define the term	catalysis.	
			[1]
(e)		m the biogas digester can be used as a fertiliser. wo non-metallic elements found in fertilisers which are needed	for
		and	[2]

For Examiner's Use **3** The electronic structures of various atoms are shown below.

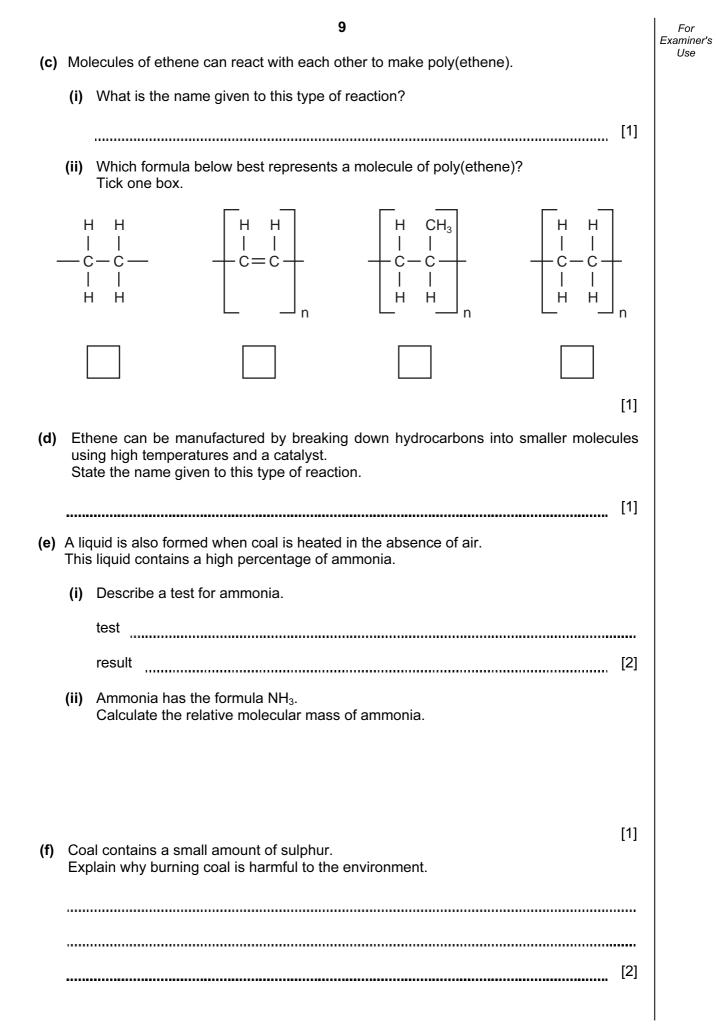
(b) Complete the following sentences using words from the list.

		chlorine	diamond	high	low	sharing
		sodium	stron	g	transfer	weak
	Cov	valent bonds are	formed by the		of pairs of ele	ectrons. Simple
	cov	alent molecules	such as	a	nd bromine have	
	me	ting points. Giar	nt covalent struct	ures such as		have many
		bon	ds and have high	melting point	S.	[5]
(c)	The	simplest covale	nt molecule is hy	drogen		
(0)	(i)	-	-	-	e arranged in a hyd	drogen molecule.
	()	Ũ			о ,	5
	(ii)	Describe a test	for hydrogen.			[1]
		test				

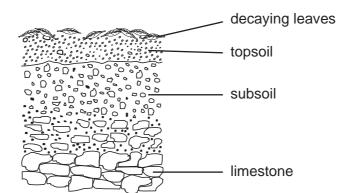
4 Coal gas is made by heating coal in the absence of air. The table shows the composition of coal gas.

name of gas	% of gas in coal gas
hydrogen	50
methane	30
carbon monoxide	7
carbon dioxide	4
nitrogen	4
ethene	3
oxygen	2

(a) (i) Which element in this table is a highly flammable gas?


(ii) Which compound in the table is an alkene?

(iii) Which compound in the table turns limewater milky?


(iii) Which compound in the table turns limewater milky?

(b) Describe a test you can use to distinguish between ethene and methane.
test

result with ethene
result with methane

5 The diagram shows a cross section of a soil.

- (a) A student took 10 g of topsoil and shook it with 200 cm³ of distilled water.
 - (i) How can the student separate the solids in the soil from the solution?

 (ii) The topsoil had a pH of 6. Which of the following gives the best description of this pH? Tick one box.
 strongly acidic

weakly acidic

neutral

weakly alkaline

[1]

[2]

(b) The soil contained large amounts of calcium ions and carbonate ions.

(i) Use the information in the diagram to suggest where these ions came from.

[1]

(ii) Complete the word equation for the reaction of calcium carbonate with hydrochloric acid.

calcium		hydrochloric	 calcium			
carbonate	+	acid	chloride	÷	 +	

(c) The table shows the mass of each ion present in $200 \,\mathrm{cm}^3$ of soil solution.

ion	formula of ion	mass present/milligrams
calcium	Ca ²⁺	12
carbonate	CO ₃ ²⁻	20
iron(III)	Fe ³⁺	4
magnesium	Mg ²⁺	5
nitrate	NO ₃	2
phosphate	PO ₄ ³⁻	1
others		6

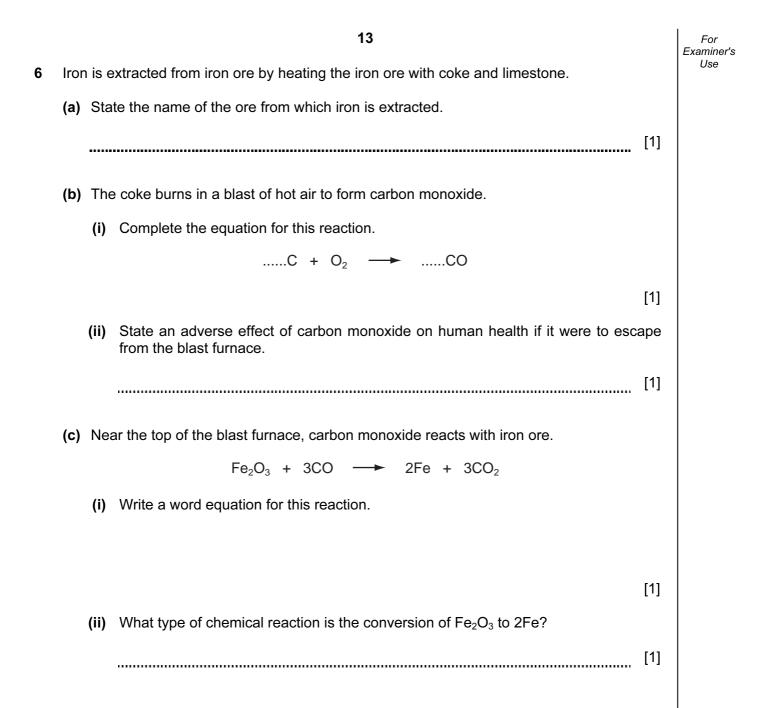
(i) Which negative ion has the highest concentration in the soil solution?

(ii) Calculate the mass of iron(III) ions in one litre (1000 cm³) of solution.

[1]

[1]

(d) The air trapped in the soil has a different composition from the air in the atmosphere. The table shows the composition of the air in the soil.


gas	percentage of gas in soil air
carbon dioxide	2
nitrogen	82
oxygen	15
other gases	1

State how the composition of soil air compares with the composition of air in the atmosphere.

carbon dioxide		
nitrogen		
oxygen	[3]	

(e) Decaying leaves produce ethanoic acid. Complete the formula for ethanoic acid showing all atoms and bonds.

[1]

[Turn Over

	e limestone is conv furnace.	verted to calcium t		
		CaCO ₃	► CaO + (CO_2
(i)	What type of cher	mical reaction is th	is?	
				[1]
(ii)	Name a use of lin	nestone other than	in the blast fur	nace.
				[1]
(iii)	The product of th furnace. What is	e reacts with silica is reaction collects the name of this p the correct answe	s on top of the roduct?	the iron ore. molten iron at the bottom of the
	bauxi	ite sand	slag	slaked lime
		dund dund	Sidy	Slakeu IIIIe
			Jidg	51akeu IIIIe [1]
(e) The	e iron obtained from		-	[1]
(e) The			contains the fo	[1] bllowing impurities.
	e iron obtained fron	n the blast furnace manganese	contains the for phosphoru	[1] ollowing impurities. s silicon
	e iron obtained fron carbon Which one of the	n the blast furnace manganese se elements is a tra	contains the fo phosphoru ansition elemen	[1] ollowing impurities. s silicon
	e iron obtained from carbon Which one of the What type of oxid	n the blast furnace manganese se elements is a tra	contains the fo phosphoru ansition elemen	[1] bllowing impurities. s silicon nt?
(i)	e iron obtained from carbon Which one of the What type of oxid	n the blast furnace manganese se elements is a tr e is phosphorus op	contains the fo phosphoru ansition elemen	[1] bllowing impurities. s silicon nt?
(i)	e iron obtained from carbon Which one of the What type of oxid Put a ring around	n the blast furnace manganese se elements is a tr e is phosphorus or the correct answe	contains the fo phosphoru ansition elemen kide?	[1] bllowing impurities. s silicon nt? [1]

e is converted to calcium oxide and carbon dioxide by the intense heat in (d) The lir

[1]

14

Calculate the percentage of the impurities in the cast iron.

BLANK PAGE

15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET The Periodic Table of the Elements

								Grc	Group								
_	=											=	≥	>	N	١N	0
							Hydrogen										4 Helium 2
7 Lithium 3	9 Beryllium 4											5 Baran 3	12 Carbon 6	14 Nitrogen	16 Oxygen 8	Pluorine 19	20 Neon 10
23 Na Sodium	24 Mg Magnesium 12	F										27 Aluminium 13	28 Si Silicon	31 Phosphorus 15	32 S Sulphur 16	35.5 C1 ^{Chlorine}	40 Ar Argon
39 Potassium 19	40 Calcium 20	45 Scandium 21	48 Tritanium 22	51 Vanadium 23	52 Cr Chromium 24	55 Man Manganese 25	56 Fe Iron	59 CO ^{Cobalt}	59 Nickel 28	64 Copper 29	65 Zn 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 Bromine 35	84 Kr Krypton 36
85 Rb Rubidium 37	88 St rontium 38	89 Yttrium 39	91 Zr Zirconium 40	93 Niobium 41	96 Mo Molybdenum 42	TC Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xe S4
133 CS Caesium 55	137 Ba ^{Barium} 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta ^{Tantalum} 73	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium 77	195 Pet Platinum 78	197 Au Gold 79	201 Hg ^{Mercury} 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi smuth 83	Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	227 Actinium 89															
*58-71 L †90-103	*58-71 Lanthanoid serie †90-103 Actinoid series	*58-71 Lanthanoid series †90-103 Actinoid series		140 Ce Cerium 58	141 Pr Fraseodymium 59	144 Neodymium 60	Promethium 61	150 Sm Samarium 62	152 Eu 63	157 Gd Gadolinium 64	159 Tb ^{Terbium} 65	162 Dysprosium 66	165 HO Holmium 67	167 Er Erbium 68	169 Tm ^{Thulium}	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	w 🗙	a = relative atomic mass X = atomic symbol b = proton (atomic) number	mic mass Ibol nic) number	232 Th 90	Protactinium 91	238 U uranium 92	Neptunium 93	Pu Plutonium 94	Am Americium 95	Curium 96	BK Berkelium 97	Cf Californium 98	Esteinium 99	Fermium 100	Mendelevium 101		Lr Lawrencium 103

The volume of one mole of any gas is $24 \, dm^3$ at room temperature and pressure (r.t.p.).

16