UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CHEMISTRY		
	Paper 3 (Extended)	0620/03	
		October/November 2006	
	Candidates answer on the Question Pape No Additional Materials required.	1 hour 15 minutes	
Candidate Name			
Centre Number		Candidate Number	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen in the spaces provided on the Question Paper.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 16.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
Total		

This document consists of 14 printed pages and 2 blank pages.

1 Choose a gas from the following list to answer the questions below. Each gas may be used once, more than once or not at all.

For Examiner's Use

	ammonia	argon	carbon dioxide	carbon monoxide	chlorine	
	ethene	hydrogen	nitrogen	oxygen		
	Which gas					
(i)	is a noble (gas,				
(ii)	is an acidio	c oxide,				
(iii)	can be pol	ymerised,				
(iv)	is the activ	e component	of air,			
(v)	is used in t	the treatment	of water,			
(vi)	is a produc	ct of respiration	n?			
(VI)	is a produc					
						[6]
						[6]

2 The table shows the melting points, boiling points and electrical properties of the six substances A to F.

For
Examiner's
Use

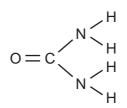
substance	melting point / °C	boiling point / °C	electrical conductor at room temperature	electrical conductor of substance dissolved in water
Α	961	2193	good	does not dissolve
В	113	444	does not conduct	does not dissolve
С	0	100	very poor	very poor
D	803	1465	does not conduct	good
E	–5 to -10	102 to 105	good	good
F	-85	-60	does not conduct	does not dissolve

(i)	Which three substances are solids at room temperature?	
		[1]
(ii)	Which one is an ionic compound?	[4]
		[1]
(iii)	Which one is a gas at room temperature?	
		[1]
(iv)	Which two substances are liquids at room temperature?	
		[1]
(v)	Which substance is a metal?	
		[1]
(vi)	Which one is an impure substance?	
		[1]

3			n carbonate is an important raw material. me a rock which is made up of calcium carbonate.		For Examiner's Use
	()			[1]	
	(b)	Wh	en calcium carbonate is heated strongly, it decomposes. CaCO ₃ \rightarrow CaO + CO ₂		
		(i)	Calculate the relative formula mass of:		
			CaCO ₃		
			CaO	[2]	
		(ii)	7.00 kg of calcium oxide was formed. What mass of calcium carbonate heated?	was	
				[2]	
	(c)	Cal	cium carbonate is used to control soil acidity.		
		(i)	Why is it important to control soil acidity?		
				[1]	
		(ii)	Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble, used to increase soil pH. Suggest two advantages of using calcium carbonate.	are	
				[2]	
		(iii)	Give one use of calcium carbonate other than for making calcium oxide controlling soil pH.	and	
				[1]	

4	Min	imis	ing air pollution is essential for health and for the environment.	For Examiner's
	(a)	Nat	ural gas is methane.	Use
		(i)	Write the equation for complete combustion of methane.	
			[2]	
		(ii)	Explain why it is dangerous to use a gas fire in a poorly ventilated room.	
			[2]	
	(b)	but	v sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur low sulphur diesel contains less than 50 ppm. Why is this an advantage to the rironment?	
			[2]	
	(c)		alytic converters reduce pollution from motor vehicles, as shown in the following gram.	
		carb	less of nitrogen bon monoxide	
			catalysts rhodium, platinum, palladium	
		(i)	What type of elements are the metals rhodium, platinum and palladium?	
			[1]	
		(ii)	Rhodium catalyses the decomposition of the oxides of nitrogen.	
			$2NO \rightarrow N_2 + O_2$	
			Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances?	
			[2]	

5 Ammonia is manufactured by the Haber Process.


 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ 200 atmospheres 450°C For Examiner's Use

The forward reaction is exothermic.

(a) (i) What is the catalyst for this reaction? [1] (ii) Newer catalysts have been discovered for this process. Using these catalysts, the operating temperature is lowered from 450°C to 400°C. What is the advantage of using a lower temperature? Explain your answer. advantage explanation [2] (b) After passing over the catalyst, the mixture contains 15% of ammonia. It is cooled and the ammonia liquefies and is separated from the unreacted nitrogen and hydrogen. They are recycled. (i) How are the gases recycled? [1] (ii) Only ammonia gas liquefies. Suggest an explanation for this. [1] (c) Urea, $CO(NH_2)_2$, is one of the fertilisers manufactured from ammonia. Ammonia is heated with carbon dioxide. (i) Write an equation for the manufacture of urea. [2] (ii) Explain why urea on its own might not be very effective in promoting crop growth. [1]

(d) Give a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound urea. Its structural formula is given below.

For Examiner's Use

Use o to represent an electron from a carbon atom. Use x to represent an electron from a hydrogen atom. Use • to represent an electron from a nitrogen atom.

[3]

- 6 An ore of copper is the mineral, chalcopyrite. This is a mixed sulphide of iron and copper.
 - (a) Analysis of a sample of this ore shows that 13.80 g of the ore contained 4.80 g of copper, 4.20 g of iron and the rest sulphur.
 Complete the table and calculate the empirical formula of chalcopyrite.

For Examiner's Use

	copper	iron	sulphur
composition by mass/g	4.80	4.20	
number of moles of atoms			
simplest mole ratio of atoms			

The empirical formula is

[3]

[3]

-[1]
- (b) Impure copper is extracted from the ore. This copper is refined by electrolysis.
 - (i) Name; the material used for the positive electrode (anode),

the material used for the negative electrode (cathode),

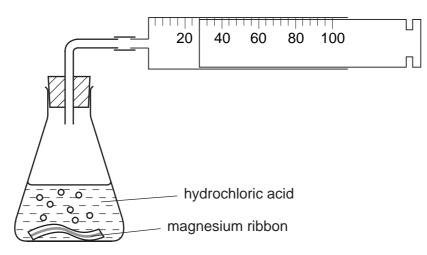
a suitable electrolyte.

(ii) Write an ionic equation for the reaction at the negative electrode.

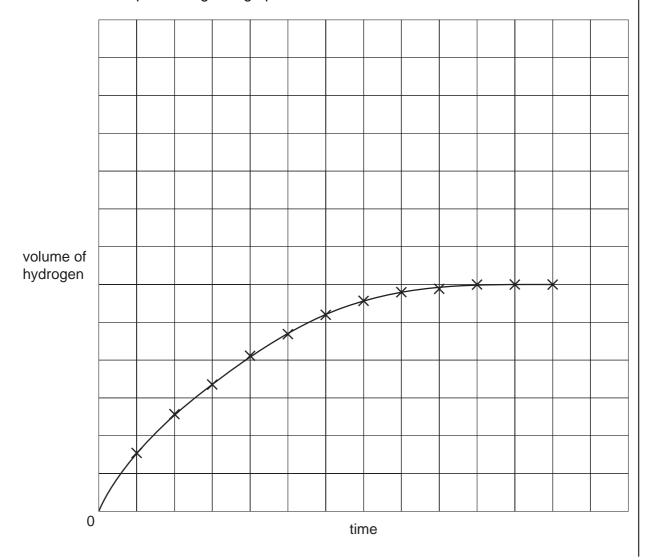
(iii) One use of this pure copper is electrical conductors, another is to make alloys. Name the metal that is alloyed with copper to make brass.

.....

[1]


(c) Two of the elements in chalcopyrite are the metal, copper, and the non-metal, sulphur. These have different properties. Copper is an excellent conductor of electricity and is malleable. Sulphur is a poor conductor and is not malleable, it is brittle. Explain, in terms of their structures, why this is so.

difference in electrical conductivity


[2] difference in malleability [2] For Examiner's Use

For Examiner's Use

(a) A piece of magnesium ribbon was added to 100 cm³ of 1.0 mol/dm³ hydrochloric acid. The hydrogen evolved was collected in a gas syringe and its volume measured every 30 seconds.

In all the experiments mentioned in this question, the acid was in excess. The results were plotted to give a graph.

	(i) The experiment was repeated. Two pieces of magnesium ribbon were added to 100 cm ³ of 1.0 mol/dm ³ hydrochloric acid. Sketch this graph on the same grid and label it X.				
		[2]			
	(ii)	The experiment was repeated using one piece of magnesium ribbon and 100 cm ³ of 1.0 mol/dm ³ ethanoic acid. Describe how the shape of this graph would differ from the one given on the grid.			
		[2]			
(b)		action rate increases when concentration or temperature is increased. ng the idea of reacting particles, explain why;			
	incr	easing concentration increases reaction rate,			
	•••••	[2]			
	incr	easing temperature increases reaction rate.			
		[2]			
	•••••	[4]			
(c)		e rate of a photochemical reaction is affected by light. A reaction, in plants, between oon dioxide and water is photochemical.			
	(i)	Name the two products of this reaction.			
		וכז			
		[2]			
	(ii)	This reaction will only occur in the presence of light and another chemical. Name this chemical.			
		[1]			

For Examiner's Use

The three types of food are carbohydrates, proteins and fats.	For
(a) Aqueous starch is hydrolysed to maltose by the enzyme amylase. The formula of maltose is:	Examiner's Use
но – – – о – – он	
Starch is hydrolysed by dilute sulphuric acid to glucose.	
но — — Он	
(i) What is an enzyme?	
[1]	
(ii) Draw the structure of starch.	
[1]	
(iii) Name the technique that would show that the products of these two hydrolyses are different.	
[1]	
(b) Proteins have the same linkage as nylon but there is more than one monomer in the macromolecule.	
(i) Draw the structure of a protein.	
[2]	
(ii) What class of compound is formed by the hydrolysis of proteins?	
[1]	

8

(c)	Fat	s are esters. Some fats are saturated, others are unsaturated.		For Examiner's
	(i)	Write the word equation for the preparation of the ester, propyl ethanoate.	101	Use
	(ii)	Deduce the structural formula of this ester showing each individual bond.	[2]	
		How could you distinguish botwcon those two foto?	[2]	
(iii)	How could you distinguish between these two fats? Fat 1 has the formula		
		$CH_2 - CO_2 - C_{17}H_{33}$ $CH - CO_2 - C_{17}H_{33}$		
		$ CH_2 - CO_2 - C_{17}H_{33}$		
		Fat 2 has the formula		
		$CH_2 - CO_2 - C_{17}H_{35}$ $CH - CO_2 - C_{17}H_{35}$		
		$CH_2 - CO_2 - C_{17}H_{35}$		
		test		
		result with fat 1		
		result with fat 2	[3]	
(iv)	Both of these fats are hydrolysed by boiling with aqueous sodium hydroxide. W type of compounds are formed?	/hat	
		and	[2]	
				1

BLANK PAGE

BLANK PAGE

15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

								Gro	Group								
-	=											≡	≥	>	>	, >	0
							- I										4 H
							Hydrogen 1										Helium 2
7	6					-						11	12	14	16	19	20
Ξ												В	ပ	z	0	ш	Ne
3 Lithium	Beryllium 4	E										5 Boron	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg												Si	₽		C1	Ar
Sodium 11	5 5	m										Aluminium 13	Silicon 14	Phosphorus 15	5	Chlorine 17	Argon 18
39	40		48	51	52	55	56	59	59	64			73	75		80	84
¥	Ca	Sc	F	>	ບັ	Mn	Fe	ပိ	ïZ	Cu	Zn	Ga	Ge			'n	Кr
Potassium 19	20	n Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	lron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32		_	Bromine 35	Krypton 36
85		89	91	93	96		101	103	106	108	112	115	119			127	131
Rb			Zr	qN		ц	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium 37	38 38	m Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	50 Tin	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133			178	181	184	186	190	192	195	197	201	204	207	209			
Cs			Ηf	Та	8	Re	os	Ir	Ŧ	Au	Hg	Τl	РЬ			At	Rn
Caesium 55	56 Barium	n Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
	226																
Ľ	Ra	Ac															
87	88	80															
*58-71	l anthan	*58-71 I anthanoid series		140	141	144		150	152	157	159	162	165	167	169	173	175
190-100	190-103 Actinoid series	d series		ů C	۲.			Sm	Eu	Gd	Tb	Dy	Ч	ш	Tm	٩٨	Lu
L				Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
	Ø	a = relative atomic mass	nic mass	232		238											
Key	×	X = atomic symbol	lod	Th			Nр	Pu	Am	Cm	Bk	ັບ	Es	Fm	Md	No	Ļ
	ą	b = proton (atomic) number	nic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103
1		_		20				5	~	2	5	2	2	22		1	22-

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

DATA SHEET The Periodic Table of the Elements