



# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

| CANDIDATE<br>NAME |  |              |               |  |  |
|-------------------|--|--------------|---------------|--|--|
| CENTRE<br>NUMBER  |  | CAND<br>NUME | DIDATE<br>BER |  |  |

CHEMISTRY 0620/05

Paper 5 Practical Test October/November 2007

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: As listed in Confidential Instructions

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODE.

Answer all questions.

Practical notes are provided on page 8.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |  |
|--------------------|--|--|
| 1                  |  |  |
| 2                  |  |  |
| Total              |  |  |

This document consists of **7** printed pages and **1** blank page.



1 You are going to investigate what happens when dilute hydrochloric acid reacts with two different solids, calcium carbonate (marble) and calcium oxide.

For Examiner's Use

Read **all** the instructions below carefully **before** starting the two experiments.

#### Instructions

## Experiment 1

Place a polystyrene cup in the beaker provided.

By using a measuring cylinder, pour 50 cm<sup>3</sup> of dilute hydrochloric acid into the polystyrene cup and record the temperature of the acid in the table.

Add the 2.5 g of small marble chips provided to the cup and stir the mixture with the thermometer. Measure and record the temperature of the mixture after 2 minutes. Pour the mixture away and rinse the polystyrene cup.

#### Experiment 2

Repeat Experiment 1 using 2.5 g of the powdered calcium carbonate provided. Record your results in the table.

#### Experiment 3

Repeat Experiment 1 using 1.5 g of the lumps of calcium oxide provided. Record your results in the table.

## Experiment 4

Repeat Experiment 1 using the 1.5 g of the powdered calcium oxide provided. Record your results in the table.

## Table of results

| Evenoviment | temperature/°C |       |            |  |
|-------------|----------------|-------|------------|--|
| Experiment  | initial        | final | difference |  |
| 1           |                |       |            |  |
| 2           |                |       |            |  |
| 3           |                |       |            |  |
| 4           |                |       |            |  |

[7]

| (a) | What did you obser           | ve in Experiment 2?                               | For Examine Use |
|-----|------------------------------|---------------------------------------------------|-----------------|
| (b) | Draw a bar chart of          | the results of the experiments on the grid below. |                 |
|     | temperature<br>difference/°C |                                                   |                 |
|     |                              | experiment number                                 |                 |
|     |                              |                                                   | [3]             |
| (c) | Which experiment p           | roduced                                           |                 |
|     | (i) the smallest ten         | nperature change,                                 |                 |
|     | (ii) the largest tom         | poratura abango?                                  | [1]             |
|     | (ii) the largest temp        | perature change?                                  | [1]             |

| (d) | Give two reasons why the temperature changes in (c) are different.                                                      |      |
|-----|-------------------------------------------------------------------------------------------------------------------------|------|
|     | 1                                                                                                                       |      |
|     |                                                                                                                         | •••• |
|     |                                                                                                                         |      |
|     | 2                                                                                                                       |      |
|     |                                                                                                                         | [2]  |
| (e) | In Experiment 2 which reactant is in excess? Explain your answer.                                                       |      |
|     |                                                                                                                         |      |
|     |                                                                                                                         |      |
|     |                                                                                                                         | [2]  |
|     |                                                                                                                         |      |
| (f) | Explain how the temperature changes would differ in the experiments if 100 cm <sup>3</sup> hydrochloric acid were used. | of   |
|     |                                                                                                                         |      |
|     |                                                                                                                         |      |
|     |                                                                                                                         | [2]  |
|     | [Total: :                                                                                                               | 201  |

For Examiner's Use You are provided with four different liquids **P**, **Q**, **R** and **S**.

Carry out the following tests on the liquids, recording all of your observations and deductions in the table. Do not write any conclusions in the table.

For Examiner's Use

| tests                                                                                                                       | observations and deductions                                 |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| (a) Test the pH of the liquids using indicator paper. Note the colour of the paper.                                         | P colour  pH  Q colour  pH  R colour  pH  S colour  pH  [2] |
| (b) (i) Add a 5 cm piece of magnesium to about 3 cm <sup>3</sup> of liquid <b>P</b> in a test–tube. Test the gas given off. | [3]                                                         |
| (ii) Repeat (b)(i) using liquids Q, R and S. Do <b>not</b> test for any gases.                                              | Q                                                           |

For Examiner's Use

|     | tests                                                                                                    | observations and deductions |
|-----|----------------------------------------------------------------------------------------------------------|-----------------------------|
|     | (c) To about 2 cm³ of liquid S add 1 spatula measure of sodium carbonate. Test the gas given off.        |                             |
|     |                                                                                                          | [3]                         |
|     | <ul><li>(d) By using a teat pipette add aqueous silver nitrate to about 1 cm³ of liquid P.</li></ul>     | [2]                         |
|     | (e) By using a teat pipette add liquid <b>Q</b> to about 1 cm <sup>3</sup> of aqueous iron(II) sulphate. | [2]                         |
| (f) | Name the gas given off in test (b)(i).                                                                   | [1]                         |
| (g) | Name the gas given off in test (c).                                                                      | [1]                         |
| (h) | Identify liquid <b>P</b> .                                                                               | [4]                         |
| (i) | What conclusions can you draw about liqu                                                                 | [1] id <b>Q</b> ?           |
|     |                                                                                                          | [2]                         |
| (j) | What conclusion can you draw about liquid                                                                | d <b>R</b> ?                |
|     |                                                                                                          | [Total: 20]                 |

# **BLANK PAGE**

### **NOTES FOR USE IN QUALITATIVE ANALYSIS**

#### **Test for anions**

| anion                                                      | test                                                             | test result                            |
|------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|
| carbonate (CO <sub>3</sub> <sup>2-</sup> )                 | add dilute acid                                                  | effervescence, carbon dioxide produced |
| chloride (Cl <sup>-</sup> ) [in solution]                  | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt.                             |
| iodide (I <sup>-</sup> )<br>[in solution]                  | acidify with dilute nitric acid, then aqueous lead(II) nitrate   | yellow ppt.                            |
| nitrate (NO <sub>3</sub> <sup>-</sup> )<br>[in solution]   | add aqueous sodium hydroxide then aluminium foil; warm carefully | ammonia produced                       |
| sulphate (SO <sub>4</sub> <sup>2-</sup> )<br>[in solution] | acidify with dilute nitric acid, then aqueous barium nitrate     | white ppt.                             |

# Test for aqueous cations

| cation                                   | effect of aqueous sodium hydroxide                         | effect of aqueous ammonia                                      |  |
|------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|--|
| aluminium (Al 3+)                        | white ppt., soluble in excess giving a colourless solution | white ppt., insoluble in excess                                |  |
| ammonium (NH <sub>4</sub> <sup>+</sup> ) | ammonia produced on warming                                | -                                                              |  |
| calcium (Ca <sup>2+</sup> )              | white., insoluble in excess                                | no ppt., or very slight white ppt.                             |  |
| copper(Cu <sup>2+</sup> )                | light blue ppt., insoluble in excess                       | light blue ppt., soluble in excess giving a dark blue solution |  |
| iron(II) (Fe <sup>2+</sup> )             | green ppt., insoluble in excess                            | green ppt., insoluble in excess                                |  |
| iron(III) (Fe <sup>3+</sup> )            | red-brown ppt., insoluble in excess                        | red-brown ppt., insoluble in excess                            |  |
| zinc (Zn <sup>2+</sup> )                 | white ppt., soluble in excess giving a colourless solution | white ppt., soluble in excess giving a colourless solution     |  |

## **Test for gases**

| gas                               | test and test results            |  |
|-----------------------------------|----------------------------------|--|
| ammonia (NH <sub>3</sub> )        | turns damp red litmus paper blue |  |
| carbon dioxide (CO <sub>2</sub> ) | turns limewater milky            |  |
| chlorine (Cl <sub>2</sub> )       | bleaches damp litmus paper       |  |
| hydrogen (H <sub>2</sub> )        | "pops" with a lighted splint     |  |
| oxygen (O <sub>2</sub> )          | relights a glowing splint        |  |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2007