

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

0 "	swer on the Question Paner		1 hour 15 minutes
Paper 2			May/June 2011
CHEMISTRY			0620/21
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

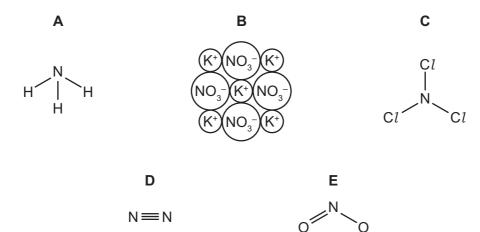
Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
Total		

This document consists of 15 printed pages and 1 blank page.

1 The structures of some substances containing nitrogen are shown below.

Answer the following questions by choosing from the structures **A**, **B**, **C**, **D** or **E**. You can use each structure once, more than once or not at all.

Which structure represents

(a) an acidic oxide,
(b) an ionic giant structure,
(c) a gas which turns moist litmus paper blue,
(d) a compound which is formed under conditions of high temperature and pressure in car engines,
(e) a molecule containing halogen atoms,
(f) a salt?

[Total: 6]

2	Vanadium	has	two	isotopes.	
---	----------	-----	-----	-----------	--

$_{23}^{50}V$	$_{23}^{51}V$
₂₃ v	23 V

(a)) Define the term isotope.					
(b)	 (b) An atom contains protons, electrons and neutrons. Complete the table to show the number of protons, electrons and neutrons in these two isotopes of vanadium. 					
		isotope	number of protons	number of electrons	number of neutrons	
		⁵⁰ ₂₃ V	23	23		
		⁵¹ ₂₃ V			28	
(0)	Caman	lata than a contain		a from the list		[3]
(C)		lete these senten	_		ora alla la a	
	can		•		medicine	non
	Two types of isotopes are radioactive andradioactive. Radioactive				ve. Radioactive	
	isoton	es are used in	f	or treating patient	s with	[3]

(d) Vanadium is a transition element.

Which two of these statements about vanadium are correct? Tick **two** boxes.

vanadium is a non-metal

vanadium conducts electricity

vanadium has a low melting point

compounds of vanadium are coloured

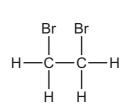
vanadium is less dense than sodium

[2]

[Total: 9]

Wat	ter is	s present in the atmosphere, the seas and in ice and snow.	
(a)	Des	scribe a chemical test for water.	
	test	t	
	res	ult	[
(b)	Sta	te one use of water in industry.	
			[
(c)		ter is a good solvent. at do you understand by the term <i>solvent</i> ?	
	****	at do you undereitand by the term content.	ſ
(q)	\/\/a	ter vapour in the atmosphere reacts with sulfur dioxide, SO_2 , to produce acid rain	
(u)	(i)	State one source of sulfur dioxide.	
	(1)		
	(::\ <u>)</u>		
	(ii)	State two adverse effects of acid rain.	
		1	
		2	[
	(iii)	Calculate the relative molecular mass of sulfur dioxide.	
			I
(e)	Wa	ter from lakes and rivers can be treated to make the water safer to drink.	
(0)		scribe two of the steps in water purification.	
		each of these steps, give an explanation of its purpose.	
	ste	o 1	
	ste	0 2	
			ſ

(f)	Wa	ter is formed when hydrogen burns in air.	
	(i)	State the percentage of oxygen present in the air.	
			[1


(ii) When 8 g of hydrogen is burned in excess air, 72 g of water is formed. What mass of hydrogen needs to be burnt to produce 252 g of water?

[1]

[Total: 14]

4 The structures of some organic compounds are shown below.

Α	В
H H H H—C—C—C—H 	H H H

C

(a) Which one of these structures represents

(i)	a polymer,	
(ii)	an unsaturated hydrocarbon,	
(iii)	the product of the catalytic addition of steam to ethene,	
(iv)	a product of the addition of aqueous bromine to ethene?	

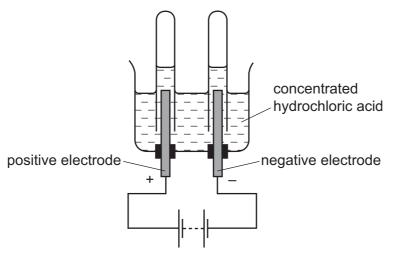
[4]

(b) (i) Balance the equation for the complete combustion of compound ${\bf A}$, ${\bf C_3H_8}$.

$$\mathrm{C_3H_8} \ + \\mathrm{O_2} \ \rightarrow \ \mathrm{3CO_2} \ + \\mathrm{H_2O}$$

[2]

(ii) State the name of **two** substances formed when compound **A** undergoes incomplete combustion.


and [2]

(c) Complete the structure of ethanoic acid to show all atoms and bonds.

[1]

[Total: 9]

5 Concentrated hydrochloric acid can be electrolysed using the apparatus shown.

(a)	What do you	understand by the	term electrolysis?	•		
						[1]
(b)		ame given to the pound the correct an	oositive electrode? nswer.			
	anion	anode	cathode	cation	electrolyte	[1]
(c)	State the nam	ne of the gas giver	off at the negative	e electrode.		ניו
						[1]
(d)	Complete the	following sentence	e about electrolysi	s using words fr	rom the list.	
	inert	magnesium	platinum	reactive	solid	
	Electrodes m	nade of graphite	or	are generally	y used in electr	olysis
	because they	are				[2]

For
Examiner's
Use

(e)	When concentrated hydrochloric acid is electrolysed, chlorine is released at the positive
	electrode.

(i) Draw the arrangement of the electrons in an atom of chlorine.

[1]

(ii) Draw the electronic structure of a chlorine molecule. Show only the outer electron shells.

[2]

(iii) Describe a test for chlorine.

test

- **(f)** Hydrochloric acid reacts with the base calcium hydroxide.
 - (i) Complete the word equation for this reaction.

[2]

(ii) Hydrochloric acid also reacts with zinc.

Complete the symbol equation for this reaction.

$${\rm Zn} \ + \{\rm HC} l \ \rightarrow \ {\rm ZnC} l_2 \ + \$$

[2]

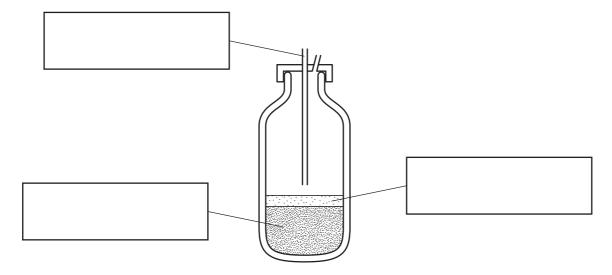
[Total: 14]

6 A student observed the reaction of various metals with both cold water and steam. Her results are shown below.

metal	reaction with cold water	reaction with steam
calcium	reacts rapidly	reacts very rapidly
copper	no reaction	no reaction
magnesium	reacts very slowly	reacts rapidly
zinc	no reaction	reacts

(a) (i) Put these metals in order of their reactivity.

le	ast reactive most reactive most reactive	
		1]
	(ii) Iron is a metal between zinc and copper in the reactivity series. Predict the reactivity of iron with	
	cold water,	
	steam[2]
(b)	The equation for the reaction of zinc with steam is:	
	$Zn + H_2O \rightarrow ZnO + H_2$	
	Write a word equation for this reaction.	
		[1]
(c)	State three physical properties which are characteristic of most metals.	
	1	


(d) Some properties of the Group I metals are shown in the table.

metal	melting point /°C	hardness	density /g per cm ³
lithium		fairly hard	
sodium	98	fairly soft	
potassium	63	soft	
rubidium	39	very soft	1.53
caesium	29	extremely soft	1.88

(i)	Estimate the melting point of lithium.	
		[1]
(ii)	How does the hardness of these metals change down the group?	
		[1
(iii)	Estimate the density of potassium.	
		[1
	[Total:	10

For Examiner's Use

7 The diagram shows a basic oxygen converter. This is used to convert impure iron from the blast furnace into steel. During this process, some of the impurities in the iron are converted into a slag.

- (a) Label the diagram to show each of the following:
 - where the oxygen enters;
 - the slag;
 - the molten steel. [3]
- **(b)** In the converter, the oxygen oxidises sulfur, carbon and phosphorus to their oxides.

(i)	Explain why converter.	sulfur dioxide	and carbon	dioxide are	easily removed	I from the
						[1]
(ii)	Explain how converter.	calcium oxide	is used to	remove phos	sphorus(V) oxide	e from the

(c)	Stainless	steel	is	an	allo	y.
-----	-----------	-------	----	----	------	----

(i) Which **one** of the diagrams, **A**, **B**, **C** or **D**, best represents an alloy? Put a ring around the correct answer.

				•
	D	С	В	Α
	∞		∞	
[1]				
			e of stainless steel.	(ii) State one use
[1]				()
[1]				
otal: 9]	[To			

8

Bro	mine	e is a red-brown liquid. When warmed, it forms an orange vapour.				
(a)		scribe what happens to the arrangement and motion of the particles when bromine inges state from a liquid to a vapour.				
		[3]				
(b)	Bro	mine can be obtained from bromide ions in seawater.				
	(i)	The symbol equation for this reaction is:				
		Cl_2 + $2Br^- \rightarrow 2Cl^-$ + Br_2				
		Complete the word equation for this reaction.				
		+ bromide ions \rightarrow + [1]				
	(ii)	Bromine is very volatile, so it can be removed from solution by bubbling air through the solution. What do you understand by the term <i>volatile</i> ?				
		[1]				
(c)	-	drogen reacts with bromine in the presence of a hot platinum catalyst to form hydrogen mide.				
	(i)	Define the term catalyst.				
		[1]				
	(ii)	Hydrogen bromide reduces hydrogen peroxide, H ₂ O ₂ .				
		2HBr + $H_2O_2 \rightarrow Br_2 + 2H_2O$				
		Explain how this equation shows that hydrogen peroxide is reduced.				
		[4]				

(iii)	A solution of hydrogen bromide in water is called hydrobromic acid. Hydrobromic acid has similar reactions to hydrochloric acid.	For Examiner's Use
	State the names of three products formed when hydrobromic acid reacts with sodium carbonate.	
	[2]	
	[Total: 9]	

For

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium 2	20 Neon 10 A 40 A Argon 18	84 Kr Krypton 36	131 Xe Xenon	Ra Radon		175 Lu Lutetium 71	Lr Lawrendur 103
			19 Fluorine 9 35.5 C 1 Chlorine	80 Br Bromine		At Astatine 85		173 Yb Ytterbium 70	Nobelium
			16 Oxygen 8 32 32 Suffur 16	79 Se Selenium 34	128 Te Tellurium			169 Tm Thulium 69	Md Mendelevium 101
	>		Nitrogen 7 31 31 Phosphorus 15	75 AS Arsenic	122 Sb Antimony 51			167 Er Erbium 68	E min
	2		Carbon 6 Carbon 8 Silicon 14	_	Sn In 50	207 Pb Lead		165 Ho Holmium	Es n Einsteinium 99
	=		11 B Boron 5 27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium		162 Dy Dysprosium 66	Cf Californium 98
				65 Zn Zinc	112 Cd Cadmium 48			159 Tb Terbium 65	Bk Berkelium
				64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	
Group				59 K Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	
Gre				59 Co Cobalt	The	192 Ir Iridium		Sm Samarium 62	
		Hydrogen		56 Fe Iron	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				Cr Chromium	Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
				48 Ti Titanium	2 r Zrconium 40	178 #f Hafnium 72			nic mass bol nic) number
				45 Sc Scandium 21	89 ≺ Yttrium	139 La Lanthanum *	227 Ac Actinium	series eries	a = relative atomic massX = atomic symbolb = proton (atomic) number
	=		Beryllium 4 24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	« × ¤
	_		7 Lithium 3 23 23 Na Sodium 11	39 K Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.