Example Candidate Responses Paper 4

Cambridge IGCSE ${ }^{\circledR}$
Chemistry 0620

For examination from 2016

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/
® IGCSE is a registered trademark
Copyright © UCLES 2017
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction 4
Assessment at a glance 6
Paper 4 - Theory (Extended) 7
Question 1 7
Question 2 11
Question 3 24
Question 4 30
Question 5 33
Question 6 39

Introduction

The main aim of this booklet is to exemplify standards for those teaching IGCSE Chemistry (0620), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, response is annotated with clear explanation of where and why marks were awarded or omitted. This, in turn, is followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their marks. At the end there is a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available to download from the School Support Hub. These files are:

Question Paper 31, June 2016	
Question paper	0620_s16_qp_31.pdf Mark scheme
Question Paper 41, June 2016	

Other past papers, Examiner Reports and other teacher support materials are available on the School Support Hub at www.cambridgeinternational.org/support

How to use this booklet

How the candidate could have improved the answer

(b) (ii) The candidate needed to realise than positive and negative for proton ar (c) The candidate failed to include the n

This explains how the candidate could have improved the answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

Common mistakes candidates made in this question

(a) Failing to give relative masses and relative
(b) (i) Failing to recall that isotopes are atoms.
(b) (ii) Failing to state that it is the number of o

This describes the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes at the exam and give them the best chance of achieving a high mark.

Assessment at a glance

All candidates must enter for three papers.

Core candidates take:
Paper $\mathbf{1} \quad 45$ minutes
A multiple-choice paper consisting of 40 items
of the four-choice type.
This paper will test assessment objectives
AO1 and AO2. Questions will be based on the
Core syllabus content.
This paper will be weighted at 30% of the
final total mark.
and:
Paper 3 A written paper consisting of short-answer and structured questions. This paper will test assessment objectives AO1 and AO2. Questions will be based on the Core syllabus content. 80 marks This paper will be weighted at 50% of the final total mark. (15 minutes

Extended candidates take:

Paper 2

45 minutes
A multiple-choice paper consisting of 40 items of the four-choice type.
This paper will test assessment objectives AO1 and AO2. Questions will be based on the Extended syllabus content (Core and Supplement).
This paper will be weighted at 30% of the final total mark.

and:

Paper 4

1 hour 15 minutes
A written paper consisting of short-answer and structured questions.
This paper will test assessment objectives AO 1 and AO . Questions will be based on the Extended syllabus content (Core and Supplement).
80 marks
This paper will be weighted at 50% of the final total mark.

All candidates take	
either:	or:
Paper 51 hour 15 minutes	Paper 6 1 hour
Practical Test This paper will test assessment objective AO3.	Alternative to Practical This paper will test assessment objective AOB .
Questions will be based on the experimental skills in Section 7.	Questions will be based on the experimental skills in Section 7.
The paper is structured to assess grade ranges $\mathrm{A}^{*}-\mathrm{G}$.	The paper is structured to assess grade ranges $\mathrm{A}^{*}-\mathrm{G}$.
40 marks	40 marks
This paper will be weighted at 20% of the final total mark.	This paper will be weighted at 20% of the final total mark.

Teachers are reminded that the latest syllabus is available on our public website at www.cambridgeinternational.org and the School Support Hub at www.cambridgeinternational.org/support

Paper 4 - Theory (Extended)

Question 1

Example Candidate Response - Question 1, High

Examiner comments

1 Protons, neutrons and electrons are subatomic particles.
(a) Complete the table to show the relative mass and relative charge of a proton, a neutron and an electron.

particle	relative mass	relative charge
proton	1	+1
neutron	1	0
electron	$\frac{1}{1840}$	-1

Mark awarded for (a) = 3 out of 3
[3]
(b) Bromine has two isotopes.
(i) Define the term isotope. of the same element 2n Inatgpes are atoms ...nsth the same number of protons but ifferent...numbers of neutrons. [2]
(ii) Explain why the two isotopes of bromine have the same chemical properties.

Ten haue He sime mumber of malency electrons so react the same
(c) The table shows the number of protons, neutrons and electrons in some atoms and ions.

Complete the table.

particle	number of protons	number of neutrons	number of electrons
${ }_{3}^{7} \mathrm{Li}$	3	4	3
${ }_{16}^{34} \mathrm{~s}^{2-}$	16	18 等	18

[Total: 12]

Mark awarded for (b) = 4 out of 4
(1) An almost model response to this question, except for ' F ' instead of ' K '.

Mark awarded for (c) = 4 out of 5

Total mark awarded = 11 out of 12

How the candidate could have improved the answer

This answer was almost completely correct. In (c), the candidate failed to realise that the element with the atomic number 19 was potassium (K).

1 Protons, neutrons and electrons are subatomic particles.
(a) Complete the table to show the relative mass and relative charge of a.proton, a neutron and an electron.

particle	relative mass	relative charge
proton	1	positive
neutron	atmeot 0	neurial
electron	$\frac{1}{1840}$	negative

(b) Bromine has two isotopes.
(i) Define the term isotope:

3solopes are atom of the same Rlementa with same profon. number buls defferent number of nentron)
(ii) Explain why the two isotopes of bromine have the same chemical properties.

Becaure they are of the same elementi. haut same... numaber.of promoron \qquad (3)...... [2]
(c) The table showș thę number of prọtons, neutrons and electrons in some atoms and lońs.

Complete the table.

particle	number of protons	number of neutrons	number of electrons
${ }_{3}^{7} \mathrm{Li}$	3	4.	3
${ }_{15}^{34} \mathrm{~S}^{2-}$	16	18	18
$4{ }_{19} \mathrm{~K}^{4}$	19	22	18

${ }_{16}^{32} \int_{16}^{802}$
Q nucleons $=p+\Omega$
$\cdot 1$
[Total: 12]
$n=$ nudeon -8
(1) The candidate needed to realise that the relative charge needs a value, so +1 and -1 were needed, rather than 'positive' and 'negative' for proton and electron respectively. Also the relative mass of a neutron is 1 .

Mark awarded for (a) = 1 out of 3
(2) Correct.
(3) A correct explanation would have referred to isotopes of bromine having the same number of outer electrons.

Mark awarded for (b) = 2 out 4
(4) The mass number (41) is missing.

Mark awarded for (c) = 4 out 5

Total marks awarded = 7 out of 12

How the candidate could have improved the answer

(a) The candidate needed to realise that the relative charge needs a value, so +1 and -1 were needed, rather than 'positive' and 'negative' for proton and electron respectively. Also the relative mass of a neutron is 1 .
(c) The candidate failed to include the mass number of potassium (41).

1 Protons, neutrons and electrons are subatomic particles.
(a) Complete the table to ṣhow the relative mașs and relative charge of a proton, a neutron and an electron.

1

particle	relative mass	relative charge
proton	$\frac{12.26}{1840}$	neulrol
neutron	$\frac{613}{1840}$	+
electron	$\frac{1}{1840}$	- HA $_{6}$

(b) Bromine has two isotopes.
(i) Define the term isotope.
...nferent, exaversons opa of the same element have different. .numbenc..... of......neutrons .2
(ii) Explain why the two iṣotopes of bromine have the same chemical. properties.
 sautpe number of protons and electuons
(3)
(c) The table shows the number of protons, neutrons and electrons in some atoms and ions.

Complete the table.

particle	number of protons	number of neutrons	number of electrons
${ }_{3}^{7} \mathrm{Li}$	3	4	7 3
${ }_{16}^{34} \mathrm{~S}^{2-}$	16	(tat 16	34x 16
${ }_{18}^{40} \mathrm{Ag}^{+}$	19	22	18

1 The candidate needed to realise that the relative charge needs a value, so +1 and -1 were needed for proton and electron respectively. They also needed to know that neutrons have no charge. The relative masses of a proton and a neutron are both 1.

Mark awarded for (a) = 0 out of 3

2 The candidate gives a partial definition of isotope. They should have stated that isotopes are 'atoms of the same element' here.
(3) The candidate should have explained that isotopes have the same chemical properties because they have the same number of outer electrons.

Mark awarded for (b) =

2 out 4
4 Row 1 is correct The figures in row 2 should be 18 neutrons and 18 electrons. In row 3 the species required is a positive ion of potassium (K) with a mass number of 41 and an atomic number of 19 .

Mark awarded for (c) = 2 out 5

Total mark awarded = 4 out of 12

How the candidate could have improved the answer
(a) The candidate should have given the relative mass of 1 for both particles and to realise that the relative charge needs a value, so +1 and -1 were needed rather than 'positive' and 'negative' for proton and electron respectively. They also needed to know that neutrons have no charge.
(b) (i) The candidate partially defined isotope. They needed to state that isotopes are atoms of the same element.
(b) (ii) The candidate should have explained that isotopes have the same chemical properties because they have the same number of outer electrons.
(c) In row 2 of the table, the candidate failed to appreciate that this particular species has 18 neutrons and 18 electrons. In row 3, the candidate failed to appreciate that the species required was a positive ion of potassium (K) with a mass number of 41 and an atomic number of 19.

Common mistakes candidates made in this question

(a) Failing to give relative masses and relative charges.
(b) (i) Failing to recall that isotopes are atoms.
(b) (ii) Failing to state that it is the number of outer electrons which determine chemical properties.
(c) Failing to appreciate that ions will not have an equal number of protons and electrons.

Question 2

2 Period 3 contains the elements sodium to argon. This question asks about the chemistry of each of the Period 3 elements or their compounds.
(a) Sodium nitrate is a white crystalline solid. When heated it melts and the following reaction occurs.

$$
2 \mathrm{NaNO}_{3}(\mathrm{l}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

A 3.40 g sample of sodium nitrate is heated.
Calculate the

- number of moles of NaNO_{3} used,

$$
\begin{aligned}
\mid \mathrm{mol} & : 85 \mathrm{~g} \\
& : 3.40 \\
= & \frac{3.40}{55}=0.04 \mathrm{mols}
\end{aligned}
$$

- number of moles of O_{2} formed,

2: 1
$0.04: n$

$$
n=\frac{0.04}{2}=0.0^{2}
$$

 mol

- volume of O_{2} formed, in dm^{3} (measured at r.t.p.)

$$
1.24
$$

$$
0: 02: n
$$

1

$$
x=24 \times 0.04=0.48
$$

(b) Magnesium reacts slowly with warm water to form a base, magnesium hydroxide.
(i) Explain what is meant by the term base.

A compound that can react with an acid to give saltw... [1]
(ii) Write a chemical equation for the reaction between magnesium and warm water.
$\mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ (3)

1 Correct.

Mark awarded for (a) = 3 out of 3

2 The answer needed to include the idea of a proton acceptor.
(3) Correct.

Mark awarded for (b) = 2 out 3
(c) Aluminium oxide is amphoteric. It is insoluble in water.
$\mathrm{AbO}_{5}^{+} \mathrm{HCH}_{4}$
Describe experiments to show that aluminium oxide is amphoteric.

acid like $H C b$ to form a salt, acting as base, It will redissolve in excess socliunhydrouide solution to form a colourless solution by forming satt of sodium Aivinminate while acting as adcid.
(d) Silicon(IV) oxide has a giant structure.
(i) Name the type of bonding in silicon(IV) oxide.
...Covalent
(ii) Give two physical properties of silicon(IV) oxide.

High melting and boilung. pant
....Insduble in mater.
e) Calcium phosphate is used in fertilisers. The bonding in calcium phosphate is ionic. Calcium phosphate contains the phosphate ion, $\mathrm{PO}_{4}{ }^{2}$ -
(i) What is ionic bonding?

Bonding between a cation and anian through complete transfer of electrons Electrosstatic forces holld the bonds. (6 [2]
(ii) Deduce the formula of calcium phosphate.
$\mathrm{Ca}_{a_{3}}\left(\mathrm{PO}_{4}\right)_{2}$

4 The candidate mentions reacting aluminium with named acids and bases but does not describe the dissolving of aluminium oxide in acids.

Mark awarded for (c) = 2 out of 3

5 Correct.

Mark awarded for (d) = 3 out of 3

6 The answer scores one mark for giving the oppositely charged ions involved but does not state that these particles attract one another

7 Correct.

Mark awarded for (e) = 2 out 3
(f) Sulfur tetrafluoride, SF_{4}, can be made by combining gaseous sulfur with fluorine.

$$
\mathrm{S}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{SF}_{4}(\mathrm{~g})
$$

The reaction is exothermic.
(i) Complete the energy level diagram for this reaction. Include an arrow which clearly shows the energy change during the reaction.

[3]
(ii) During the reaction the amount of energy given out is $-780 \mathrm{~kJ} / \mathrm{mol}$.

The F-F bond energy is $160 \mathrm{~kJ} / \mathrm{mol}$.
Use this information to determine the bond energy, in $\mathrm{kJ} / \mathrm{mol}$, of one $\mathrm{S}-\mathrm{F}$ bond in SF_{4}

- E:

$$
\begin{gathered}
S+F-F-F-S-F \\
O+2(160)=+320 \\
4(S F) \\
320-4(n)=-780 \\
n=+550+275
\end{gathered}
$$

8 The poorly-drawn enthalpy change arrow loses one mark here. It should have started from a point level with the energy of the reactants and finished at a point level with the energy of the products.

9 Correct.

Mark awarded for (f) = 5 out of 6
(g) Chlorine and compounds of chlorine are important in water treatment and in laboratory testing for water.
(i) Chlorine is added to water to make the water safe to drink.

Explain why adding chlorine makes water safe to drink.
It kius bacteria in water
(ii) A compound of chlorine is used in the laboratory to test for the presence of water.

Name the compound of chlorine used in this test and describe the colour change seen in a positive result of this test.
name of compoundCobalt chlon'de \qquad
colour change fromblue.......... topinks. \qquad $10^{[3]}$
(h) Argon is an unreactive noble gas.
(i) Explain why argon is unreactive.

It outer...shells are complete with electrons[1]
(ii) Give one use of argon.

Filled in filament lamps [1]
(10) Correct.

Mark awarded for (g) = 4 out of 4

11 Correct.

Mark awarded for (h) = 2 out of 2

Total mark awarded = 23 out of 27

How the candidate could have improved the answer

(b) (i) This needed to include the idea of a proton acceptor.
(c) This included the idea of reacting aluminium with named acids and bases but needed to describe the dissolving of aluminium oxide in acids.
(e) (i) The first mark was scored for giving the oppositely charged ions involved, but the response needed also to state that these particles attract one another.
(f) (i) The only point preventing a score of 3 marks here was the poorly-drawn enthalpy change arrow. The arrow should have started from a point level with the energy of the reactants and finished at a point level with the energy of the products.

2 Period 3 contains the elements sodium to argon. This question asks about the chemistry of each of the Period 3 elements or their compounds.
(a) Sodium nitrate is a white crystalline solid. When heated it melts and the following reaction occurs.

$$
2 \mathrm{NaNO}_{3}(\mathrm{l}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

A 3.40 g sample of sodium nitrate is heated.
Calculate the

- number of moles of NaNO_{3} used,

$$
\frac{3.4}{85} \neq \frac{0.04}{2}
$$

- number of moles of O_{2} formed,

$$
0.02 \div 2
$$

- volume of O_{2} formed, in dm^{3} (measured at r.t.p.).
(1) 0.01 $=x$
$0.24 \ldots \mathrm{dm}^{3}$
[3]
(b) Magnesium reacts slowly with warm water to form a base, magnesium hydroxide.
(i) Explain what is meant by the term base.

Proton acceptor Has oH ions. 2
(ii) Write a chemical equation for the reaction between magnesium and warm water.

1 The candidate does not score the first mark but is awarded two marks, as the error is carried forward.

Mark awarded for (a) = 2 out of 3
(2) Correct.
(3) The first mark is awarded here, but the candidate fails to realise that hydrogen is the other product.

Mark awarded for (b) = 2 out 3
(c) Aluminium oxide is amphoteric. It is insoluble in water.

Describe experiments to show that aluminium oxide is amphoteric.
React aluminum oxide with an acid \qquad You will get an aluminum salt and water. React aluminum oxide and base you will get water and salt.
Eg: $\left.\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \overrightarrow{\left(\mathrm{Al}_{2}\right.} \mathrm{Al} \mathrm{(SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$.
(d) silicon(IV) oxide has a giant structure $(2) \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{NO}_{3} \rightarrow \mathrm{Ar}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{H}_{2}$
(I) Name the type of bonding in silicon(IV) oxide.

(ii) Give two physical. properties of silicon(IV) oxide.

Very hard. and high density. 6
(e) Calcium phosphate is used in fertilisers. The bonding in calcium phosphate is ionic. Calcium phosphate contains the phosphate ion, $\mathrm{PO}_{4}{ }^{3-}$.
(i) What is ionic bonding? Bonding between a metal and non-metal. Cation bonded to anion. (1) [2]
(ii) Deduce the formula of calcium phosphate.
 [1]

4
One mark is awarded for the idea of reacting aluminium oxide with an acid and with a base.

Mark awarded for (c) = 1 out of 3

5 Correct.

6 The answer is awarded one mark for stating that silicon(IV) oxide is hard.

Mark awarded for (d) = 2 out of 3

7 One mark is awarded for giving the oppositely charged ions involved but the candidate fails to state that these particles attract one another.

Mark awarded for (e) = 2 out 3
(f) Sulfur tetrafluoride, SF_{4}, can be made by combining gaseous sulfur with fluorine

$$
\mathrm{S}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{SF}_{4}(\mathrm{~g})
$$

The reaction is exothermic.
(i) Complete the energy level diagram for this reaction. Include an arrow which clearly shows the energy change during the reaction.

8
(ii) During the reaction the amount of energy given out is $780 \mathrm{~kJ} / \mathrm{mol}$.

The F-F bond energy is $160 \mathrm{~kJ} / \mathrm{mol}$.
Use this information to determine the bond energy, in $\mathrm{kJ} / \mathrm{mol}$, of one $\mathrm{S}-\mathrm{F}$ bond in SF_{4}

$$
320-x=780
$$

$$
S+F-F-F-F-F
$$

-115
$\triangle 780$

$$
x=-460
$$

$$
F-F \times 2=320
$$

$$
320-x=780 \quad \frac{-460}{4}=\geq
$$

$$
x=-460
$$

kJ/mol [3]
(g) Chlorine and compounds of chlorine are important in water treatment:and in-laboratory testing for water.
(i) Chlorine is added to water to make the water safe to drink.

Explain why adding chlorine makes water safe to drink.
To kill microben and bacteria. (1)
(ii) A compound of chlorine is used in the laboratory to test for the presence of water.

Name the compound of chlorine used in this test and describe the colour change seen in a positive result of this test.

(h) Argon is an unreactive noble gas.
(i) Explain why argon is unreactive.

(ii) Give one use of argon.

(10) Correct.

Mark awarded for (g) = 4 out of 4
(11) Correct.

Mark awarded for (h) = 2 out of 2

Total marks awarded = 17 out of 27

How the candidate could have improved the answer

(b) (ii) The first mark was awarded but the candidate needed to state that hydrogen was the other product.
(c) One mark was awarded for reacting aluminium oxide with an acid and with a base. The candidate should have named the acid and the base and should have stated that dissolving would be seen.
(e) (i) The first mark was scored for giving the oppositely charged ions involved but the response needed to state that these particles attract one another.
(f) (i) The only point preventing a score of 3 marks here was the poorly-drawn enthalpy change arrow. It should have started from a point level with the energy of the reactants and finished at a point level with the energy of the products.
(f) (ii) The first mark was awarded for determining the energy needed to break the bonds in $2 \mathrm{~F}_{2}$ molecules $(320 \mathrm{~kJ})$. The third mark was awarded for dividing a processed value (-460 kJ) by 4 . The only error was failing to realise that if 320 kJ was put in to break the F_{2} bonds and the total energy given out was 780 kJ , then the energy given out when SF_{4} formed must have been 1100 kJ . (Note that candidates did not need to know that exothermic changes have negative values and endothermic changes have positive values.)

2 Period 3 contains the elements sodium to argon. This question așks about the chemistry of each of the Period 3 elements or their compounds.
(a) Sodium nitrate is a white crystalline solid. When heated it melts and the following reaction occurs..

$$
2 \mathrm{NaNO}_{3}(\mathrm{l}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

A 3.40 g sample of sodium nitrate is heated.
Calculate the

- number of moles of NaNO_{3} used,
\qquad mol
- number of moles of O_{2} formed,
\qquad
- volume of O_{2} formed, in dm^{3} (measured at r.t.p.).

1
\qquad
(b) Magnesium reacts slowly with warm water to form a base, magneslum hydroxide.
(i) Explain what is meant by the term base.
.... It doeson't rezect

(ii) Write a chemical equation for the reaction between magnesium and warm water.
\qquad $2 \mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \rightarrow 2 \mathrm{MaH} \mathrm{H}_{2} \mathrm{O}$. 3
(1) The candidate has failed to realise that the number of moles could be found by dividing the mass of sodium nitrate by its relative formula mass (85). Then the stoichiometric ratio from the chemical equation should be used to find the number of moles of oxygen gas. Finally, the number of moles of oxygen should be multiplied by 24 to give the final answer.

Mark awarded for (a) = 0 out of 3
(2) The candidate should have stated that a base was a proton acceptor.

3 The candidate should have written that $\mathrm{Mg}(\mathrm{OH})_{2}$ and H_{2} were the products before balancing the equation.

Mark awarded for (b) = 0 out of 3
(c) Aluminium oxide is amphoteric. It is insoluble in water

Describe experiments to show that aluminium oxide is amphoteric.

\qquad
\qquad
(d) Silicon(IV) oxide has a giant structure.
(i) Name the type of bonding in silicon(IV) oxide.
....). Por. Porlent lonic (${ }^{\text {... }}$ [1]
(ii) Give two physical properties of silicon(IV) oxide.

(e) Calcium phosphate is used in fertilisers. The bonding in calclum phosphate is ionic. Calcium phosphate contains the phosphate ion, PO_{4}^{3-}
(i) What is ionic bonding?

When two ionic combanuds bound
\qquad
(ii) Deduce the formula of calcium phosphate.

(f) Sulfur tetrafluoride, SF_{4}, can be made by combining gaseous sulfur with fluorine.

$$
\mathrm{S}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{SF}_{4}(\mathrm{~g})
$$

The reaction is exothermic.
(i) Complete the energy level diagram for this reaction. Include an arrow which clearly shows the energy change during the reaction.

(ii) During the reaction the amount of energy given out is $780 \mathrm{~kJ} / \mathrm{mol}$.

The F-F bond energy is $160 \mathrm{~kJ} / \mathrm{mol}$.
Use this information to determine the bond energy, in $\mathrm{kJ} / \mathrm{mol}$, of one $\mathrm{S}-\mathrm{F}$ bond in SF_{4}

$780-160-160=460$
$460 \div 4=115$
+95. $1 \mathrm{k} \quad \mathrm{kJ} / \mathrm{mol}$ [3]

8 The first mark is awarded for determining the energy needed to break the bonds in 2 F2 molecules (320 kJ). The third mark is awarded for dividing a processed value (460 kJ) by 4.
The only error was failing to realise that if 320 kJ was put in to break the F_{2} bonds and the total energy given out was 780 kJ , then the energy given out when SF_{4} formed must have been 1100 kJ. (Note that candidates did not need to know that exothermic changes have negative values and endothermic changes have positive values.)

Mark awarded for (f) = 3 out of 6
(g) Chlorine and compouinds of chlorine are important in water treatment and in laboratory testing for water.
(i) Chlorine is added to water to make the water safe to drink.

Explain why adding chlorine makes water safe to drink.
....................germs
(ii) A compound of chlorine is used in the laboratory to test for the, presence of water.

Name the compound of chlorine used in this test and describe the colour change seen in a positive result of this test.
name of compound12 \qquad
colour change fromيreen \qquad to.. colouslests 10...
(h) Argon is an unreactive noble gas.
(i) Explain why argon-is unreactive.
......becuse it has a comple...................... outur shell [1]
(ii) Give one use of argon.
\qquad used it lignts 11........ [1]

9 Correct.
(10) All answers are incorrect.

Mark awarded for (g) = 1 out of 4
(11) Correct.

Mark awarded for (h) = 2 out of 2

Total mark awarded = 6 out of 27

How the candidate could have improved the answer

(a) The candidate failed to realise that the number of moles could be found by dividing the mass of sodium nitrate by its relative formula mass (85). Then the stoichiometric ratio from the chemical equation should be used to find the number of moles of oxygen gas. Finally, the number of moles of oxygen should be multiplied by 24 to give the final answer.
(b) (i) The candidate should have stated that a base was a proton acceptor.
(b) (ii) The candidate should have written that $\mathrm{Mg}(\mathrm{OH})_{2}$ and H_{2} were the products before balancing the equation.
(f) (i) The candidate failed to show that the product energy level is below the reactant energy level and should have put the identity of the products on this line.
(f) (ii) The first mark was awarded for determining the energy needed to break the bonds in $2 \mathrm{~F}_{2}$ molecules (320 kJ). The third mark was awarded for dividing a processed value (-460 kJ) by 4.
The only error was failing to realise that if 320 kJ was put in to break the F_{2} bonds and the total energy given out was 780 kJ , then the energy given out when SF_{4} formed must have been 1100 kJ . (Note that candidates did not need to know that exothermic changes have negative values and endothermic changes have positive values.)

Common mistakes candidates made in this question

(a) Failing to determine that the relative formula mass of NaNO_{3} was 85.
(b) (i) Failing to know that the syllabus describes a base as a proton acceptor.
(b) (ii) Assuming that the product was MgO .
(c) Failing to describe the experiment details.
(d) (ii) Giving chemical properties such as 'acidic' when physical properties were asked for.
(e) (i) Simply describing how ionic bonds form (by transfer of electrons). Failing to state that the oppositelycharged ions attract one another.
(e) (ii) Leaving the charges on the ions.
(f) (i) Poor drawing of enthalpy change arrows. These arrows should start from a point level with the energy of the reactants and finish at a point level with the energy of the products.
(f) (ii) Failing to realise that if 320 kJ was put in to break the F_{2} bonds and the total energy given out was 780 kJ , then the energy given out when SF_{4} formed must have been 1100 kJ . (Note that candidates did not need to know that exothermic changes have negative values and endothermic changes have positive values.)
(h) (ii) Stating that Argon is used 'in filaments in lamps' instead of 'in filament lamps'.

Question 3

3 When aqueous sodium thiosulfate and dilute hydrochloric acid are mixed, a precipitate of insoluble sulfur is produced. This makes the mixture difficult to see through.

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})
$$

The time taken for the cross to disappear from view is measured.

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask.

The time taken for the formation of the precipitate of sulfur to make the cross disappear from view is recorded.

experiment number	volume of sodium thiosulfate $/ \mathrm{cm}^{3}$	volume of hydrochloric acid $/ \mathrm{cm}^{3}$	volume of distilled water $/ \mathrm{cm}^{3}$	time taken for cross to disappear from view/s
1	10	10	40	56
2	20	10	30	28
3	20	10	15	14

(a) State the order in which the aqueous sodium thiosulfate, hydrochloric acid and distilled water should be added to the flask.

(b) In experiment 3 the student wanted the sodium thiosulfate to be double the concentration used in experiment 2.
(i) Complete the table to show the volumes which should be used and the expected time taken for the cross to disappear from view in experiment 3 .
[2]
(ii) Use collision theory to explain why increasing the concentration of sodium thiosulfate would change the rate of reaction.

Increastng the concentration would mean more prabliche on sodium thosulfate in that prosticular volume........................... with HC - There will be more frequent collisions between spdum thiosullate and HCl and thus rate of reaction would

(3)

(c) The student repeated experiment 1 at a higher temperature.

Use collision theory to explain why the rate of reaction would increase.
... At higher temperatere partictes yain more kinetic. energy and move more faster. There would be \qquad ...
more frequent collissons between reactants clue to speed. and reactants will collide with greater enongy

(1) Correct

Mark awarded for (a) = 1 out of 1

2 The candidate shows that doubling the concentration would halve the time, but has failed to see the relevance of keeping the total volume constant.

3 Correct. Both points are adequately explained.

Mark awarded for (b) = 3 out of 4

4 The first two points gain marks, but the candidate needed to state that as the increased temperature caused a higher proportion of collisions to reach activation energy.

Mark awarded for (c) = 2 out of 3

Total mark awarded = 6 out of 8

How the candidate could have improved the answer
3 (b) (i) By keeping the total volume constant.
3 (c) The first two points earned marks, but the candidate needed to state that, as a result of the increased temperature, a higher proportion of collisions were able to reach activation energy.

3 When aqueous sodium thiosulfate and dilute hydrochloric acid are mixed; a precipitate of insoluble sulfur is produced. This makes the mixture difficult to see through.

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})
$$

The time taken for the cross to disappear from view is measured.

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask.

The time taken for the formation of the precipitate of sulfur to make the cross disappear from view is recorded.

experiment number	volume of sodium thiosulfate $/ \mathrm{cm}^{3}$	volume of hydrochloric acid $/ \mathrm{cm}^{3}$	volume of distilled water $/ \mathrm{cm}^{3}$	time taken for cross to disappear from view/s
1	10	10	40	56
2	20	10	30	28
3	40	10	10	14

(a) State the order in which the aqueous sodium thiosulfate, hydrochloric acid and distilled water should be added to the flask.
Ine sodinm thiosulfate and water shauld be 1 . added first, followed by the hydrochoric acid
(b) In experiment 3 the student wanted the sodium thiosulfate to be double the concentration used in experiment 2,
(i) Complete the table to show the volumes which should be used and the expected time taken for the cross to disappear from view in experiment 3.
(ii) Use collision theory to explain why increasing the concentration of sodium thiosulfate would change the rate of reaction.
When the concentration increases the rete increasets \qquad
besexs Here would be more partides to collide
 rate would increage
(c) The student repeated experiment 1 at a higher temperature.

Use collision theory to explain why the rate of reaction would increase.
Th particles would gain energy when themperature increases causing them to moce foster and collide more frequently and then the mout be mise......... 4 succosstui...allisions beruuse more actinstion...energey..... [3]
(1) Correct.

Mark awarded for (a) = 1 out of 1
(2) Correct.
(3) The candidate does not refer to the fact that increased concentration results in more particles per unit volume or to the fact that this brings about an increased collision rate between particles

Mark awarded for (b) = 2 out of 4

4 The candidate gains the first two marks here, but does not explain that a higher proportion of collisions would be above activation energy.

Mark awarded for (c) = 2 out of 3

Total mark awarded = 5 out of 8

How the candidate could have improved the answer
(b) (ii) The candidate needed to refer to the fact that increased concentration results in more particles per unit volume and to the fact that this results in an increased collision rate between particles.
(c) The candidate gained the first two marks but needed to state that, as a result of increased temperature, a higher proportion of collisions were able to reach activation energy.

3 When aqueous sodium thiosulfate and dilute hydrochloric acid are mixed, a precipitate of insoluble sulfur is produced. This makes the mixture difficult to see through.

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})
$$

The time taken for the cross to disappear from view is measured.

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask.

The time taken for the formation of the precipitate of sulfur to make the cross disappear from view is recorded.

experiment number	volume of sodium thiosulfate $/ \mathrm{cm}^{3}$	volume of hydrochloric acid $J \mathrm{~cm}^{3}$	volume of distilled water $/ \mathrm{cm}^{3}$	time taken for cross to disappear from view/s
1	10	10	40	56
2	20	10	30	28
3	40	10	30	14

(a) State the order in which the aqueous sodium thiosulfate, hydrochloric acid and distilled water should be added to the flask.

$$
\begin{aligned}
& \text { First distilled water then hydrochloric acid and then } \\
& \text { sodium thiosulfate. }
\end{aligned}
$$

(b) In experiment 3 the student wanted the sodium thiosulfate to be double the concentration used in experiment 2.
(i) Complete the table to show the volumes which should be used and the expected time taken for the cross to disappear from view in experiment 3.
(ii) Use collision theory to explain why increasing the concentration of sodium thiosulfate would change the rate of reaction.
There ave more particles of so dium thio sulf ate ...which collide witha the other particles, making thereaction go fostur.
(c) The student repeated experiment 1 at a higher temperature.

Use collision theory to explain why the rate of reaction would increase.
..... Incxeasing the heat equs gives the particles wore ...energy so the collide with eachother more of ten and with greater force increasing the rote of reaction

(1) Correct.

Mark awarded for (a) = 1 out of 1

2 The candidate shows that doubling the concentration would halve the time but has failed to see the relevance of keeping the total volume constant.
(3) The candidate does not refer to the fact that the increased concentration results in more particles per unit volume or to the fact that this results in an increased collision rate between particles.

Mark awarded for (b) = 1 out of 4
(4) The candidate explains that the collision rate increases but fails to explain that this is because higher energetic particles move quicker. There is no reference to the fact that a higher proportion of collisions would be above activation energy.

Mark awarded for (c) = 1 out of 3

Total mark awarded = 3 out of 8

How the candidate could have improved the answer
(b) (i) By keeping the total volume constant.
(b) (ii) The candidate did not refer to the fact that an increased concentration results in more particles per unit volume or to the fact that this results in an increased collision rate between particles
(c) The candidate explained that the collision rate increases but failed to explain that this was because higher energetic particles move quicker. There was no reference to the fact that a higher proportion of collisions would be above activation energy.

Common mistakes candidates made in this question
(b) (i) Failing to realise that the total volume of the mixture had to be constant each time.
(b) (ii) Referring to the concentration causing more particles to be present (rather than more particles in a particular volume). Referring to 'more' collisions rather than 'an increased rate of collisions'.
(c) Failing to explain that increasing the temperature leads to a higher proportion of collisions being above activation energy.
4. Electroplating steel objects with silver involves a three-step process.
step 1 A coating of copper is applied to the object.
step 2 A coating of nickel is applied to the object.
step 3 The coating of silver' is applied to the object.
(a) A diagram of the apparatus used for step 1 is shown.

(i) The chemical process taking place on the surface of the object is

$$
\mathrm{Cu}^{u^{2}}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

Explain whether this process is oxidation or reduction.
This process is reduction as the Gopper is gaining
electrons
(ii) Explain why the concentration of copper ions in the electrolyte remains constant throughout step 1.
The copper anode is not inert and therefore loses ions into the electrolyte. This means that although the copper ions.... are reducing on the surface of the object, they are constantly being replaced with ions from the anode
(b) Give two changes which would be needed in order to coat nickel onto the object in step 2.

$$
\begin{aligned}
& \text { One would reed to change the Copper anole for now } \\
& \text { one made of no perse one would ass need } \\
& \text { to change the electioligte for a nickelvcompound solution, } \\
& \text { - } 2 \text { un Selsolntas. }
\end{aligned}
$$

(c) Copper, nickel and silver are transition elements. Typical physical properties of transition elements are a high density and a high melting. point.
Give three different properties of transition metals which are not typical l of other metals.

- They coin hove variable charades

They often can be used as catalysts
They usually form coloured compounds

1 Correct.

2 The idea of copper ions being lost from the anode and deposited at the cathode is explained here, but the candidate doesn't state that these processes happen at the same rate.

Mark awarded for (a)= 2 out of 3
(3) Correct.
(4) The candidate fails to say that it is the ions which have variable charges.

Mark awarded for (b) = 4 out of 5

Total mark awarded = 6 out of 8

How the candidate could have improved the answer

(a) (ii) The idea of copper ions being lost from the anode and deposited at the cathode was explained, but the candidate also needed to state that these processes happen at the same rate.
(c) The candidate needed to state that it is the ions which have variable charges.

4 Electroplating steel objects with silver involves a three-step process.
step 1 A coating of copper is applied to the object.
step 2 A coating of nickel is applied to the object.
step 3 The coating of silver is applied to the object.
(a) A diagram of the apparatus used for step 1 is shown.

(i) The chemical process taking place on the surface of the object is

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

Explain whether this process is oxidation or reduction.
A reduction because eten a reduction ocurs electrons are beine gained
(ii) Explain why the concentration of copperions in the electrolyte remains constant throughout step 1.

copper ions....that were unsed
.....nup

(b) Give two changes which would be needed in order to coat nickel onto the object in step 2.

The electrolyte mould needed to be clenged, to a substonce of nickel omes the etentrote moull...... none to be chengli as bell
(c) Copper, nickel and silver are transition elements. Typical physical properties of transition elements are a high density and a high melting point.

Give three different properties of transition metals which are not typical of other metais.
Tex form coloured ions are generally.... quite unrecictive ane tuy condin of electricilby onnes trest inetl one element has mope than Iform [3]

1 Correct.

2 The candidate fails to say that copper ions are lost from the anode and deposited at the cathode and that these processes happen at the same rate.

Mark awarded for (a) = 1 out of 3

3 The candidate fails to state that the anode should be made of nickel.

4 The candidate only gives 'coloured ions' as a property not typical of other metals

Mark awarded for (b) = 2 out of 5

Total mark awarded $=$ 3 out of 8

How the candidate could have improved the answer

(a) (ii) The candidate needed to explain that copper ions are lost from the anode and deposited at the cathode and that these processes happen at the same rate.
(b) The candidate needed to state that the anode should be made of nickel.

4 Electroplating steel-objects with silver involves a three-step process.
step 1 A coating of copper is applied to the object.
step 2 A coating of nickel is applied to the object.
step 3 The coating of silver is applied to the object.
(a) A diagram of the apparatus used for step 1 is shown.

(i) The chemical process taking place on the surface of the object is

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

Explain whether this process is oxidation or reduction.

(ii) Explain why the concentration of copper ions in the electrolyte remains constant throughout step 1.

...re mixeol nith sulfater 2
\qquad
(b) Give two changes which would be needed in:order to coat nickel onto the object in step 2.

A. different electrolyte and a difpent nidke-anote

 .. $*$ the anode (3\qquad
\qquad
(c) Copper, nickel and silver are transition elements.

Typical physical properties of transition elements are a high density and a high melting. point.
Give three different properties of transition metals which are not typical of other metals:
... Moluable

- Ductile
- Shiney 4[3]
(1) Incorrect.
(2) Incorrect.

Mark awarded for (a) = 0 out of 3
(3) The candidate fails to name a suitable electrolyte.

4 The candidate fails to give properties that are true for transition metals but not for typical metals.

Mark awarded for (b) = 1 out of 5

Total mark awarded = 1 out of 8

How the candidate could have improved the answer

(b) The candidate needed to name a suitable electrolyte.
(c) The candidate needed to give properties that were true for transition metals but not for typical metals.

Common mistakes candidates made in this question

(a) (ii) Common mistake was, not stating that the rate of copper ions forming at the anode was equal to the rate at which they were deposited at the cathode.
(c) Stating properties that were true for both transition metals and for typical metals, e.g. electrical conductivity, or stating differences that were given in the question, e.g. high melting point.

Question 5

5 Sulfuric acid is produced by the Contact process. The steps of the Contact process are shown.

(a) Sulfur is a common starting material for the Contact process.

Name a source of sulfur.
U8A vdcanoes in the USA
(b) Describe step 2, giving reaction conditions and a chemical equation. Reference to reaction rate and yield is not required.
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$ for this reaction a temperature of $450^{\circ} \mathrm{C}$ is needed as it is exothermic, a higher temperature would heoust in grea faster reaction This reaction is not reversible. A pressure of $1-2$ atmasphere is aloo needed. A \Leftrightarrow The catalyst vanadium (v) oxide is also needed. (5]
(c) Step 3 involves adding sulfur trioxide to concentrated sulfuric acid to form oleum.

Complete the chemical equation for this reaction.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3} \rightarrow \ldots \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \ldots \ldots 3 \tag{1}
\end{equation*}
$$

(d) Dilute sulfuric acid is a typical acid:

A student adds excess dilute sulfuric acid to a sample of solid copper(II) carbonate in a test-tube.
(i) Give three observations the student would make.
\rightarrow bubbles of gas
\rightarrow efferveocence
\rightarrow Rolution Changes
. Wlue \qquad 4
(ii) Give the names of all products formed.
\rightarrow copper sulphate, carban dioxide woter
\qquad
(e) Concentrated sulfuric acid has different properties to dilute sulfuric acid.

When concentrated sulfuric acid is added to glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, steam is given off and a black solid is formed.
(i) Name the black solid.
\qquad
hydrogen sulphate hag Astphate
(ii) What type of reaction has occurred?
........exothermic. reaction
(7)
(1) Correct.

Mark awarded for (a) = 1 out of 1
(2) The candidate fails to describe the reaction as being reversible but scores the other 4 marks.

Mark awarded for (b) = 4 out of 5
(3) Correct.

Mark awarded for (c) = 1 out of 1
(4) The candidate fails to state that the copper(II) carbonate would dissolve.

5 Correct.
Mark awarded for (d) = 2 out of 3
(6) The candidate fails to name the substance as carbon.
(7) This is a possible alternative answer to 'dehydration'.

Mark awarded for (e) = 1 out of 2

Total mark awarded = 9 out of 12

How the candidate could have improved the answer
(b) The candidate needed to describe the reaction as being reversible.
(d) (i) The candidate needed to state that the copper(II) carbonate would dissolve.
(e) (i) The candidate needed to name the substance as carbon.

5 Sulfuric acid is produced by the Contact process. The steps of the Contact process are shown.

(a) Sulfur is a common starting material for the Contact process.

Name a source of sulfur

(b) Describe step 2, giving reaction conditions and a chemical equation. Reference to reaction rate and yield is not required.ixed with
Sulfuriis...nested m excess oxygen to
form sulfur lixide $\mathrm{S}+\mathrm{O}, \mathrm{O}, \mathrm{SO}_{2}$, This
is an ent itemic reaction so it works fest
at high terntares It is mixed and
Hen passed over seperate bads of catulyst wanadium (YII)
oxide. This forms the sulfur frioxide 委
$2 \mathrm{SO}_{2}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$. Hert should be supplied
(c) Step 3 involves adding sulfur trioxide to concentrated sulfuric acid to form oleum.

Complete the chemical equation for this reaction.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \ldots . .
$$

(d) Dilute sulfuric acid is a typical acid.

A student adds excess dilute sulfuric acid to a sample of solid copper(II) carbonate in a test-tube.
(i) Give three observations the student would make.

A salt would form, a colourless liquid \qquad would form and bubbles wauld form \qquad
(ii) Give the names of all products formed.

Copper (II) sulfate, carbon dioxide and
water 5.
(e) Concentrated sulfuric acid has different properties to dilute sulfuric acid.

When concentrated sulfuric acid is added to glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, steam is given off and a black solid is formed.
(i) Name the black solld.

Carbon sulfite
(ii) What type of reaction has occurred?

Exothermic reaction \qquad 7

(1) Correct.

Mark awarded for (a) = 1 out of 1

2 The candidate fails to describe the reaction as being reversible and does not give the correct temperature (450 ${ }^{\circ} \mathrm{C}$), pressure (1 to 5 atm) or catalyst (vanadium pentoxide).

Mark awarded for (b) = 1 out of 5

(3) Correct.

Mark awarded for (c) = 1 out of 1

4 The candidate fails to state that the copper(II) carbonate would dissolve or that the final colour would be blue.

5 Correct.

Mark awarded for (d) = 1 out of 3

6 The candidate fails to name the substance as carbon.

7 This is a possible alternative answer to 'dehydration'.

Mark awarded for (e) = 1 out of 2

Total mark awarded = 5 out of 12

How the candidate could have improved the answer
(b) The candidate needed to describe the reaction as being reversible and needed to give the correct temperature ($450{ }^{\circ} \mathrm{C}$), pressure (1 to 5 atm) and catalyst (vanadium pentoxide).
(d) (i) The candidate needed to state that the copper(II) carbonate would dissolve or that the final colour would be blue.
(e) (i) The candidate needed to name the substance as carbon.

5 Sulfuric acid is produced by the Contact process. The steps of the Contact process are shown.

(a) Sulfur is a common starting material for the Contact process.

Name a source of sulfur.
From the oil. which is is refined \& sulphur is produced...... [1]
(b) Describe step 2, giving reaction conditions and a chemical equation. Reference to reaction rate and yield is not required.
$450^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}$ and at 10 atmosphericthe.......reaction conditions. Vanadium........entoxide....... is the catalyst use to spur on the reaction.
\qquad
\qquad
$\rightarrow \mathrm{SO}_{4}+\mathrm{SH}_{\mathrm{O}} \rightarrow \mathrm{SH}_{4}+\mathrm{SOH}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{H} \mathrm{O}_{4}$
(c) Step 3 involves adding sulfur trioxide to concentrated sulfuric acid to form oleum.

Complete the chemical equation for this reaction.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \ldots \ldots \tag{1}
\end{equation*}
$$

$\mathrm{H}_{2} \mathrm{SE}_{2}$

$$
\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}
$$

(d) Dilute sulfuric acid is a typical acid.
A.student adds excess dilute sulfuric acid to a sample of solid copper(II) carbonate in a test-tube.
(i) Give three observations the student would make.

- The solid copper (II) carbonate would change sol or.
 -..............would leave behind a reddish-brown color. [2]
(ii) Give the names of all products formed.
-...-. Copper..... Sulphate \qquad
(e) Concentrated sulfuric acid has different properties to dilute sulfuric acid.

When concentrated sulfuric acid is added to glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, steam is given off and a black solid is formed.
(i) Name the black solid.
\qquad
(ii) What type of reaction has occurred?
................... displacement reaction (7) [1]
(1) The candidate fails to state that it is crude oil which is a source of sulfur.

Mark awarded for (a) = 0 out of 1

2 The candidate fails to describe the reaction as being reversible and fails to give the correct temperature ($450{ }^{\circ} \mathrm{C}$), pressure (1 to 5 atm) or a balanced equation.

Mark awarded for (b) = 1 out of 5

(3) Correct.

Mark awarded for (c) = 1 out of 1

4 The candidate fails to state that the copper(II) carbonate would effervesce or that the final colour would be blue

5 The candidate fails to state that water and carbon dioxide would form as well as copper(II) sulfate.

Mark awarded for (d) = 0 out of 3Correct.
(7) This is not allowed as an alternative answer to 'dehydration'.

Mark awarded for (e) = 1 out of 2

Total mark awarded = 3 out of 12

How the candidate could have improved the answer

(b) The candidate needed to describe the reaction as being reversible and needed to give the correct temperature ($450{ }^{\circ} \mathrm{C}$), pressure (1 to 5 atm) and write an equation,
(d) (i) The candidate needed to state that the copper(II) carbonate would effervesce or that the final colour would be blue.
(d) (ii) The candidate needed to state that water and carbon dioxide would form as well as copper(II) sulfate.

Common mistakes candidates made in this question
(b) Not stating the temperature, pressure and catalyst needed for the Contact process.
(d) (i) Not stating the three observations which can be made when copper(II) carbonate reacts with an acid.
(e) (i) Not stating that concentrated sulfuric acid dehydrates sugar.

Question 6

Example Candidate Response - Question 6, High

Examiner comments

6 Petroleum is a source of many important chemicals.
(a) Name two industrial processes which must take place to produce alkenes from petroleum. Fractional Distillation, Cracking
(b) Ethene, $\mathrm{CH}_{2}=\mathrm{CH}_{2}$, and propene, $\mathrm{CH}_{2}=\mathrm{CHCH}_{3}$, can bôth be converted into polymers.
(i) What type of polymerisation takes place when ethene forms a polymer?

Addition Polymerisation
(ii) What is the empirical formula of the polymer formed from ethene?
iii) Propene has the structural formula $\mathrm{CH}_{2}=\mathrm{CHCH}_{3}$.

Draw two repeat units of the polymer made from propene. H^{\prime}

2
(c) Ethene will react with steam to form ethanol.

Propene will react with steam to form two isomers, both of which are alcohols.

Suggest the structures of these alcohols.
3

H

1 Correct.
Mark awarded for (a) = 2 out of 2

2 The answers are correct except that the candidate fails to show the empirical formula of the polymer.

Mark awarded for (b) = 3 out of 4

3 The candidate fails to draw the structure of propan-2-ol.

Mark awarded for (c) = 1 out of 2
(d) Esters are organic chemicals noted for their characteristic smells. Ethanoic acid and methanol will react to form an ester.
(i) Name the catalyst needed to form an ester from ethanoic acid and methanol.
copper
[1]
(ii) Name the ester formed when ethanoic acid reacts with methanol.
methys ethanoate
(iii) Draw the structure of the ester formed when ethanoic acid reacts with methanol. Show all bonds.

[2]
(iv) Give the name of a polyester.

Hiverylene

4 This is correct except that the candidate fails to name the catalyst used in the formation of esters from carboxylic acids and alcohols.

Mark awarded for (d) = 4 out of 5

Total mark awarded = 10 out of 12

How the candidate could have improved the answer

(b) The answer was correct except that the candidate needed to show the empirical formula of the polymer.
(c) The candidate needed to draw the structure of propan-2-ol.
(d) The answer was correct but the candidate also needed to name the catalyst used in the formation of esters from carboxylic acids and alcohols.

6 Petroleum is a source of many important chemicals.
(a) Name two industrial processes which must take place to produce alkenes from petroleum

$$
\rightarrow \text { Burning of forsif fossil fuel. }
$$

$$
\begin{equation*}
\rightarrow \text { Extracting petroleum } \tag{1}
\end{equation*}
$$

(b) Ethene, $\mathrm{CH}_{2}=\mathrm{CH}_{2}$, and propene, $\mathrm{CH}_{2}=\mathrm{CHCH}_{3}$, can both be converted into polymers
(i) What type of polymerisation takes place when ethene forms a polymer?

Addition polymerivation.
(ii) What is the empirical formula of the polymer formed from ethene?

$$
\mathrm{C}_{2}+C_{6} H_{8}
$$

(iii) Propene has the structural formula $\mathrm{CH}_{2}=\mathrm{CHCH}_{3}$

Draw two repeat units of the polymer made from propene
 3
(c) Ethene will react with steam to form ethanol.

Propene will react with steam to form two isomers, both of which are alcohols
Suggest the structures of these alcohols.

1 The candidate fails to correctly name two industrial processes.

Mark awarded for (a) = 0 out of 2

2 The candidate fails to show the empirical formula of the polymer.

3 The candidate fails to draw two repeat units of the polymer

Mark awarded for (b) = 1 out of 4

The candidate fails to draw the structures of the two alcohols.

Mark awarded for (c) = 0 out of 2
(d) Esters are organic chemicals noted for their characteristic smells. Ethanoic acid and methanol will react to form an ester.
(i) Name the catalyst needed to form an ester from ethanoic acid and methanol.

Sodium hydroxide
(5)... [1]
(ii) Name the ester formed when ethanoic acid reacts with methanol.
methly ethanoate

(iii) Draw the structure of the ester formed when ethanoic acid reacts with methanol. Show all bonds.

(iv) Give the name of a polyester.

Nylon polyester.
(8 [1]
[Total: 13]

5 The candidate fails to name the catalyst used in the formation of esters from carboxylic acids and alcohols.

6 The candidate fails to draw the structures of the two alcohols.
(7) The candidate fails to draw an ester.

8 The candidate fails to name a polyester.

Mark awarded for (d) = 1 out of 5

Total mark awarded = 2 out of 12

How the candidate could have improved the answer

(a) The candidate needed to give the two industrial processes.
(b) (i) The candidate needed to show the empirical formula of the polymer.
(b) (iii) The candidate needed to draw two repeat units of the polymer.
(c) The candidate needed to draw the structures of the two alcohols.
(d) (i) The candidate needed to name the catalyst used in the formation of esters from carboxylic acids and alcohols.
(d) (iii) The candidate needed to draw the correct ester.
(d) (iv) The candidate needed to correctly name a polyester.

Common mistakes candidates made in this question

(b) (ii) Not realising that an addition polymer must have the same empirical formula as the monomer from which it is made.
(b) (iii) Assuming that two repeat units of (poly)propene is $6 \mathrm{CH}_{2}$ groups in a row.
(d) (iv) Thinking that nylon is a polyester.

Cambridge Assessment International Education
1 Hills Road, Cambridge, CB1 2EU, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

