UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/04

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	age 2	Mark Scheme: Teachers' version	Syllabus Papa er 0580 PapaC
	-	IGCSE – October/November 2009	0580
Abbrev	viations		ambridge.co
cao	correct answer	only	140
cso	correct solution	only	
dep	dependent		2
ft	follow through		
	ignore subseque	ent working	
	or equivalent	-	
	Special Case		
	seen or implied		

www without wrong working

1 (a) (i)	8.4(0)	B2	B1 for 1.2 or 3.6 seen or SC1 for figs 84 in answer
(ii)	$\frac{their(i)}{20} \times 100 \text{oe}$ 42 ft www2	M1 A1ft	ft their 8.4 × 5 After 0 scored SC1 ft for 58% or $\frac{20 - their(i)}{20} \times 100$ correctly given
(b)	6	B2	M1 for 9 or $8 \div (1 + 8 + 3)$ soi
(c)	$\frac{2.4}{2} \times 3$ oe (= 3.6 seen) or their (a) (i) ÷ 7 × 3	M1	
	$\frac{3}{12} \times 9$ oe (= 2.25 seen)	M1	
	1.6(0) cao www3	A1	
(d)	$\frac{2.40}{1.25}$ oe	M1	Implied by figs 192
	1.92 www2	A1	[11]

2 (a) (i)	Reflection (M), $x = 1$	B1,B1	If extra transformations given in part (a) then zero scored
(ii)	Rotation (R)	B1	Must be "rotation".
	180	B1	Allow half turn for 180.
	(centre) (1, 0)	B1	Allow other clear forms of (1, 0)
(iii)	Enlargement (E)	B1	Must be "enlargement"
	(centre) (6, 4)	B1	Allow other clear forms of (6, 4) e.g. vector
	(scale factor) 3	B1	Accept 3 : 1 or 1 : 3
(iv)	Shear (H) y-axis invariant oe (factor) –1	B1 B1 B1	Must be "shear" Allow other explanation for invariant but not "parallel to" isw after <i>y</i> -axis invariant seen

	Page 3 Mark Scheme: IGCSE – Octobe			sion Syllabus Apper 2009 0580 Paper
(b)) (i)	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B2	Sion Syllabus er 2009 0580 0580 B1 for correct right-hand column matrix Ft only their factor in (a) (iv) provided not zero B1ft for left-hand column in 2 by 2 matrix
	(ii)	$\begin{pmatrix} 1 & 0 \\ -1 ft & 1 \end{pmatrix}$	B2ft	Ft only their factor in (a) (iv) provided not zero B1ft for left-hand column in 2 by 2 matrix provided shear factor is not zero or SC1 for $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ if not ft [15]
6 (a)) (i)	1	B1	Penalty of -1 in question if any answers given as decimals or percentages (to 3sf) alone, but isw cancelling/conversion after correct answer
	(ii)	$\frac{3}{6}$ oe	B1	
(b)) (i)	$\frac{2}{30}$ oe www2	B2	M1 for $\frac{2}{6} \times \frac{1}{5}$
	(ii)	6–12 and 12–6 and 7–11 and 11–7 soi	M1	Evidence of all pairs adding up to 18 but no extras e.g. $4/6 \times 1/6$
		$k \times \frac{1}{6} \times \frac{1}{5}$ for $k =$ integer	M1	Without seeing the first M, $\frac{4}{6} \times \frac{1}{5}$ oe scores M2, $\frac{2}{6} \times \frac{1}{5}$ oe scores M1
		$\frac{4}{30}$ oe www3	A1	$\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{5}$ of solids with
	(iii)	$\frac{4}{6} \times \frac{2}{5}$	M1	
		$\frac{8}{30}$ oe www2	A1	
(c))	$\frac{2}{6} + \frac{4}{6} \times \frac{2}{5}$ oe	M1	$\frac{2}{6}$ + their (b) (iii)
		$\frac{18}{30}$ oe cao www2	A1	
(d))	4	B2	M1 for $(1 + 1 + 6 + 7 + 11 + 12 + x) \div 7 = 6$ or better
				[13]

		474
Page 4	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2009	0580

4

(ii)

(iii)

www2

 $0.5 \times 140 \times 180 \sin$ (their 96.4) oe

 $(\sin B =) \frac{140\sin(their96.4)}{240}$

12521 to 12523 or 12 500 or 12520 cao

oe

				Can
1	(a) (i)	Accurate triangle with 2 arcs seen, 2 mm accuracy for lines AC and BC	B2	SC1 if accurate but no arcs or one arc and BC are wrong way round with arcs
	(ii)	Accurate bisector of angle ACB , 2° accuracy and both pairs of arcs shown (accept equidistant marks on edges for 1 st set of arcs) + must meet AB	B2ft	Ft their triangle SC1ft if accurate but no/one pair of arcs or short with arcs In both (ii) and (iii) isw
	(iii)	Accurate perpendicular bisector of AD 2 mm accuracy at mid-point and 2° for right angle and shows both sets of arcs + must meet AC	B2ft	ft their <i>D</i> , which must be on <i>AB</i> SC1ft if accurate but no/one pair of arcs or short with arcs
	(iv)	Correct region shaded cao	B1	Dependent on correct triangle, accurate bisectors of angle ACB and side AD with correct D
	(b) (i)	$(\cos C) = \frac{140^2 + 180^2 - 240^2}{2 \times 140 \times 180} \text{oe}$	M2	(-5600/50400 or -14/126) Allow use of 7, 9 and 12 M1 for correct implicit statement Verification using 96.4 scores M2 max
		- 0.111(1)or better or 96.37 to 96.38	E1	Accept $-\frac{1}{9}$ but not a non-reduced fraction

M1

A1

M2

(s = 280), allow use of 7, 9 (31.3...)

M1 for correct implicit statement

Allow use of 7, 12

	35.4 or 35.42 to 35.44 cao www3	A1	SC2 for correct answer by other method [15]
5 (a) (i)	(x+3)(2x+5) - x(x+4) = 59 oe $2x^2 + 6x + 5x + 15 - x^2 - 4x = 59$ oe $x^2 + 7x - 44 = 0$	M1 A1 E1	Implies M1 (allow $11x$ for $6x + 5x$) Correct conclusion – no errors or omissions
(ii)	(x+11)(x-4)	B2	SC1 any other $(x + a)(x + b)$ where $a \times b = -44$ or $a + b = 7$
(iii)	-11, 4 www ft	B1ft	Strict ft dep on at least SC1 in (ii) allow recovery if new working seen
(iv)	$\tan = \frac{(their + ve root) + 3}{2(their + ve root) + 5} \text{oe}$ 28.3 (00) ft www2	M1 A1ft	Could be alt trig method oe M1 where trig function is explicit ft one of their positive roots $(27.4^{\circ} (27.40 - 27.41) \text{ from } x = 11)$

Pag		: Teachers' versi ber/November 20	on Syllabus er 009 0580 Phace
(b) (i)	$\frac{2x+5}{x+4} = \frac{x+3}{x} \text{ oe} x^2 + 4x + 3x + 12 = 2x^2 + 5x x^2 - 2x - 12 = 0$	M1 A1 E1	onSyllabuser00905800.000Must be seen. Allow ratio or correct p0.000Correct expansion of brackets seen (allow $4x + 3x$)Correct conclusion – no errors or omissions MI must be seen
(ii)	$\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-12)}}{2(1)}$ or $(x-1)^2 - 12 - 1$ (B1) and $x - 1 = \pm \sqrt{13}$ (B1) - 2.61, 4.61 final answers www4	B1,B1 B1,B1	In square root B1 for $(-2)^2 - 4(1)(-12)$ or better If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$, B1 for $-(-2)$ and $2(1)$ or better If B0, SC1 for -2.6 and 4.6 or both answers correct to 2 or more dps rot -2.6055, 4.6055
(iii)	26.4 (26.42 to 26.44) ft	B1ft	ft $4 \times a$ positive root + 8 [16]

6 (a) (i)	-16	B 1	
(ii)	18 to 19	B1	
(b) (i)	-4.3 to -4.2, 1.5 to 1.6	B1,B1	
(ii)	-4.5 to -4.4 , 1.3 to 1.4	B1,B1	
(iii)	-4.5 to -4.4 < <i>x</i> < 1.3 to 1.4 ft	B1ft	Ft their (ii). Allow clear worded explanations and condone \leq signs
(c)	$-\frac{30}{7}$ oe isw conversion	B2	Accept $-4\frac{2}{7}$, 30/-7 M1 for 30/7 oe fracts, isw conversion or for -30/7 oe soi
(d)	Ruled line passing within 2 mm of (-5, 30) and (2, 0)	B2	B1 for ruled line parallel to $g(x)$. By eye (21° to 25° to horizontal if in doubt) allow broken line
(e) (i)	Ruled horizontal line through $(-3, -27)$	B1	No daylight, not chord (allow broken)
(ii)	<i>y</i> = -27	B 1	
(f)	Ruled lines $x = -3$, $x = -2$, $y = 40$ Region enclosed by lines $x = -3$, x = -2, $y = 40$ and $y = g(x)$	B1 B1	Long enough to be boundary of region – allow broken or solid ruled lines Allow any clear indication
	x = -2, y = 40 and $y = g(x)$	DI	[15]

Pa	ge 6	Mark Scheme: Teac IGCSE – October/No			Syllabus of er 0580	
					aCam.	
(a) (i)	$\frac{1}{360} \times \pi$	× 2 × 24 oe .12 to 25.14) www2	M1 A1	Accept 8 π	Syllabus 0580 Annorado Syllabus Annorado Syllabus Syllabus Annorado Syllabus Syllabu	
(ii)	$\frac{1}{360} \times \pi$	× 24 ² oe 02 or 301.4 to 301.7 www2	M1 A1	Accept 96 :		
(b) (i)		r (a) (i) oe 4.01) cao www2	M1 A1			
(ii)		eir radius) ² 66 to 23.67) cao www2	M1 A1	-	thod for <i>h</i> explicit $\overline{60}, 2\sqrt{140}, 4\sqrt{35}$	
(iii)	5	(their r) ² × (their h) 8 cao www2	M1 A1	Not for $h =$	= 24	
(c) (i)	27 <i>W</i>		B1			
(ii)	4 <i>W</i>		B1	If B0, B0 in	n (c), SC1 for 27 and 4 alone [12]	

8	(a)	$5.5 < t \le 6$	B1	Condone poor notation
	(b)	$\begin{array}{l} 4.25, 4.75, 5.25, 5.75, 6.25, 6.75\\ (2 \times 4.25 + 7 \times 4.75 + 8 \times 5.25 + 18 \times 5.75)\\ + 10 \times 6.25 + 5 \times 6.75) (= 283.5)\\ \div 50 \text{ or their } \sum f\\ \textbf{5.67 www4} \end{array}$	M1 M1 M1 A1	At least 5 correct mid-values seen $\sum fx$ where x is in the correct interval allow one further slip Depend on second method After M3 allow 5.7 isw conversion to mins/secs and reference to classes
	(c) (i)	17, 15	B 1	
	(ii)	Rectangular bars of heights 11.3 and 15 Correct widths of 1.5 and 1 – no gaps	B1ft B1ft B1	ft their 17 divided by 1.5 ft their 15 11.3 plot between 11 and 12 include lines and 15 to be touching the 15 line
	(iii)	2.5 cao	B1	[10]

Page 7	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2009	0580

Page 7		Mark Scheme: Teac IGCSE – October/No			Syllabus r 12 at this stage 3) + 4(m + 4) seen r 12 at this stage in stages
9 (a)	$3(m-3) + 4(m+4) = -7 \times 12$ 3m-9 + 4m + 16 = -84 -13 www4		M2 A1 A1	Allow <u>all over</u> 12 at this stage M1 for $3(m-3) + 4(m+4)$ seen Allow <u>all over</u> 12 at this stage May be seen in stages	
	$ \begin{array}{r} 0.5 & \text{oe} \\ \hline \frac{3(x+3)}{(x-1)} \\ \frac{x+1}{(x-1)(x-1)} \end{array} $	$\frac{-2(x-1)}{(x+3)}$ $\frac{1}{(x+3)}$ final answer	B1 M1 A1	If brackets not seen allow $3x + 9 - 2x \pm 2$ as numerator with a correct denominator isw incorrect expansion of denominator if correct brackets seen	
(iii)	$\overline{(x-1)(x)}$ $x+11 =$ $x^2 + 11x$	$(\frac{11}{x})^{-1} = 1$ ft or $\frac{1}{x}(x-1)(x+3)$ or better ft $= x^{2} + 3x - x - 3$ cso www3	M1 M1 A1	Ft their (b)(e denominator correctly ii) dep on fraction in (ii) with e as denominator evious M1
(c)	$p(q-1) = pq = t + p$ $\frac{t+p}{p} = c$		M1 M1 M1	Ft their 2 nd ste e.g. dividing b	tep erm on one side ep

10 (a)	21 + 23 + 25 + 27 + 29 = 125 31 + 33 + 35 + 37 + 39 + 41 = 216	B1 B1	
(b)	Cubes	B 1	
(c) (i)	<i>n</i> oe	B 1	
(ii)	n^3 oe	B 1	
(d)	$4^2 - 4 + 1 = 13$ www	E 1	Allow 16 for 4^2 , otherwise all must be seen
(e)	$7 \times 43 + 2 + 4 + 6 + 8 + 10 + 12$	B 1	All must be seen
(f)	n(n-1) final answer oe	B 1	
(g)	$n(n^2 - n + 1) + \text{their (f)}$ $n^3 - n^2 + n + n^2 - n = n^3$	M1 E1	All must be seen, no errors or omissions [10]