

International General Certificate of Secondary Education

MARK SCHEME for the November 2003 question papers

0606 ADDIT	IONAL MATHEMATICS
0606/01	Paper 1, maximum raw mark 80
0606/02	Paper 2, maximum raw mark 80

CAMBRI BabaCambridge.com

INTERN

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the November 200.

	maximum	minimum mark required for grade:						
	mark available	А	С	E				
Component 1	80	63	31	21				
Component 2	80	67	36	26				

Grade A* does not exist at the level of an individual component.

Page 1 Mark Scheme S			my my
IGCSE EXAMINATIONS - NOVEMBED 2003	Page 1	Mark Scheme	J. P.
IGCSE EXAMINATIONS - NOVEMBER 2003 00		IGCSE EXAMINATIONS – NOVEMBER 2003	06

Mark Scheme Notes

- Marks are of the following three types:
- spacambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:
 - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)

		ma
Page 2	Mark Scheme	S. A
	IGCSE EXAMINATIONS – NOVEMBER 2003	00

Penalties

- papaCambridge.com MR –1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- This is deducted from A or B marks in the case of premature PA –1 approximation.
- S –1 Occasionally used for persistent slackness.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation.

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS Paper 1

Page 1 Mark Sc	heme	Syllabo
1. $x + 3y = k$ and $y^2 = 2x + 3$	1	an
Elimination of x or y	M1	x or y must go completely, but allo
→ y^2 + 6y -(2k+3)=0 or → x^2 - (2k + 18)x + (k^2 - 27) = 0	A1	for simple arithmetic or numeric slips
$\rightarrow \lambda$ ($\Sigma \Lambda$ · 10) Λ · (Λ Σ ·) 0		
Uses b ² – 4ac	M1	Any use of b^2 -4ac, even if =0 or >0
\rightarrow k < -6	A1 [4]	со
2. $8^{-x} = 2^{-3x}$ $4^{\frac{1}{2}x} = 2^{x}$ Attempts to link powers of 2	B1 B1 M1	Wherever used Needs to use x ^a ÷x ^b =x ^{a-b}
\rightarrow x -3- (-3x) = 5 - (x)		
\rightarrow x = 1.6 or 8/5 etc	A1	со
$5 + 2 = 0^{-X} - 2 + 1 = 0^{-X} - 1 = 0^{-$	[4]	
$\log 8^{-x} = -3x\log 2$, $\log 4^{\frac{1}{2}x} = x\log 2$ equate coefficients of $\log 2$	[B1B1 M1A1]	
3. $x^3 + ax^2 + bx - 3$ Puts x=3 $\rightarrow 27+9a+3b-3=0$	M1A1	Needs x=3 and =0 for M mark
Puts x=-2 $\rightarrow -8+4a-2b-3=15$	M1A1	Needs $x=3$ and $=0.00$ M mark
(9a+3b=-24 and 4a-2b=26)		(A marks for unsimplified)
Sim equations \rightarrow a = 1 and b = -11	A1	
SIM equations $\rightarrow a - 1$ and $a - 1$	[5]	со
4. $(\sqrt{3}-\sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5-2\sqrt{2}\sqrt{3}$	B1	Co anywhere
4. $(\sqrt{3}-\sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5-2\sqrt{2}\sqrt{3}$ Divides volume by length ²	M1	V÷l ² used
$\frac{4\sqrt{2}-3\sqrt{3}}{5-2\sqrt{6}} \times \frac{5+2\sqrt{6}}{5+2\sqrt{6}}$	M1	\times by denominator with sign changed
0-200 0 200		
Denominator = 1		
Numerator = $20\sqrt{2}-15\sqrt{3}+8\sqrt{12}-6\sqrt{18}$		
But $\sqrt{12} = 2\sqrt{3}$ and $\sqrt{18} = 3\sqrt{2}$	M1	Correct simplification somewhere with either of these
$\rightarrow 2\sqrt{2} + \sqrt{3}$	A1	co
	[5]	
5		
y=0 when $3x + \frac{1}{4}\pi = \pi$		
$\rightarrow x = \frac{1}{4}\pi$	B1	Co. Allow 45°
/ <u> </u>		
$\int 6\sin(3x+\pi/4)dx = -6\cos(3x+\pi/4) \div 3$	M1 A2,1	Knows to integrate. Needs "cos".
Between 0 and $\pi/4$	DM1	All correct, including ÷3, ×6 and -ve Uses limits correctly – must use x=0
$\rightarrow 2 + \sqrt{2} \text{ or } 3.41$	A1	In any form – at least 3sf
	[6]	
6 Wind 50i- 70j V(still air) = 280i -40j		
(i) Resultant velocity = v _{air} + w	M1	Connecting two vectors (allow -)
(i) Resultant velocity – $\mathbf{v}_{air} + \mathbf{w}$ $\rightarrow 330\mathbf{i} - 110\mathbf{j}$	A1	Co (Could get these 2 marks in (ii))
$\tan^{-1}(110/330) = 18.4^{\circ}$	DM1	For use of tangent (330/110 ok)
\rightarrow Bearing of Q from P = 108°	A1	со
(ii) Resultant speed = $\sqrt{(330^2+110^2)}$	M1	Use of Pythagoras with his
Time = 273 ÷ resultant speed	1	components
= 47 minutes	A1√	
Casta drawinga ara ak	[6]	For 273 ÷ √(a²+b²)
Scale drawings are ok.	L=1	

			Mary Mary
Page 2 Mark Sc	heme		Syllaba
IGCSE EXAMINATIONS	6 – NOVEME	BER 2003	0606
	-	-	°C.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B2,1,0	column matric – independent	Syllaba 0606 atrices come – as row es – as 3 by 4 or 4 by 3 of whether they are multiplication or not.
$= (7.3 5.9 5.2 4.4) \times \begin{pmatrix} 40\\ 50\\ 50\\ 60 \end{pmatrix}$	M1 A1	Correct metho the 3 - co for A	d for multiplying any 2 of
or $(0.6 \ 0.2 \ 0.5) \times \begin{pmatrix} 1220 \\ 670 \\ 490 \end{pmatrix}$ \rightarrow \$1111	M1		d for remaining two.
γ φτιτι	B1 [6]	Co – even if fr	om arithmetic.
8 (i) d/dx(lnx) = 1/x	B1	Anywhere, eve	en if not used in "u/v"
$\frac{dy}{dx} = \frac{(2x+3) \times \frac{1}{x} - (\ln x) \times 2}{(2x+3)^2}$ (ii) $\delta y = (dy/dx) \times \delta x = 0.2p$	M1A1√ M1A1	use product fo unsimplified.	
(iii) $dy/dt = dy/dx \times dx/dt$	M1	-	ed with dy/dt. M mark praic dy/dx × p. nixed with δγ
\rightarrow dx/dt = 0.6	A1√ [7]		s dy/dx. Condone use of
9 (a) Uses sec ² x = 1+tan ² x \rightarrow quad in sec or ×c ² then uses s ² +c ² =1 \rightarrow quad in cos \rightarrow 4sec ² x+8secx-5=0 \rightarrow -5cos ² x+8cosx+4=0 \rightarrow secx = -2.5 (or0.5) or cosx=-0.4 (or2) \rightarrow x = 113.6° or 246.4° (b) tan(2y+1) = 16/5 = 3.2 Basic angle associated with 3.2 = 1.27 Next angle = π + 1.27 and 2π + 1.27	B1 M1 A1A1√ B1 M1	solution of a 3 cos. A1 co. A1√ fo Anywhere (allo Realising the r	uses correct method for term quadratic in sec or or 360°–"first ans" only. ow 72.6°) need to add on π and/or
(Value – 1) \div 2 \rightarrow 3.28 (others are 0.134 and 1.705)	M1A1 [8]	any correct va are given, prov	used ie −1, then ÷2 for lue. Allow if all 3 values viding none are over 4. ax 2/4 B1, M0, M1, A0)

			4
Page 3	Mark Scl IGCSE EXAMINATIONS		Syllabo Syllabo Syllabo Syllabo Syllabo Ser 2003 0606
$f(x) = 5 - 3e^{3}$	28		"Can
(i) Range is		B1	Allow ≤ or <
()	$= 0 \rightarrow e^{\frac{1}{2}x} = \frac{5}{3}$ r calculator $\rightarrow x = 1.02$	M1A1	Syllabu BER 2003 0606 Allow ≤ or <
(iii)	(1.02, 0) and (0, 2)	B1 B1√	Shape in 1 st quadrant. Both shown or implied by statement.
(iv) e ^{½x} = (5 x/2 = In f ¹ (x) =	– y)÷3 [(5-y)/3] 2In[(5–x)/3]	M1 M1 A1 [8]	Reasonable attempt $e^{\frac{1}{2}x}$ as the subject. Using logs. All ok, including x, y interchanged.
1			
	(i) $y=\frac{1}{2}x$ and $y=3x-15$ $\rightarrow C(6,3)$	M1 A1	Soln of simultaneous eqns Co (or step method if B done first)
	OB=OC+CB	M1	Vectors, step or soln of y=½x+5 and
	→ B(8,9)	A1√	y=3x-15 From his C
n of OC = ½, r qn of AD is y-	n of AD = −2 -6=−2(x−2) or y=−2x+10	M1 A1	use of m1m2=-1 (M0 if perp to y=3x) Co – unsimplified.
oln of y=½x a	and eqn of AD \rightarrow D(4,2)	M1A1	Sol of simultaneous eqns. co.
	= √45, OA = √40 DABC = 2(√45+√40)	M1 M1 A1	Once. Adding OA,AB,BC,CO Co.
		[11]	
2 EITHER			
	τr + 2x + 2(5r/4) ½(125 − πr − 5r/2)	M1 A1	Attempt at 4/5 lengths. Co.
	h = 3r/4	M1	Anywhere in the question – independent of any other working
Area of trian	gle = $\frac{1}{2} \times 2r \times 3r/4 = 3r^2/4$	M1	Use of ½bh with h as function of r
$A = \frac{1}{2}\pi r^{2} + 2$ = 125r - 1/2		B1 A1	Correct $\frac{1}{2}\pi r^2$ + 2rx. Answer given – beware fortuitous ans.
(ii) dA/d	r = 125 – πr –7r/2	M1A1	Any attempt to differentiate. Co.
Solve	ed = 0 to give	DM1	Setting his differential to 0.
→ r = 250	/ (2π + 7) or 18.8	A1	Any correct form.
		[10]	

Page 4	Mark S		Syllabu A
	IGCSE EXAMINATION	S – NOVEME	BER 2003 0606
2 OR			-an
(i)	h / (12-r) = 30 / 12	M1	Syllabb BER 2003 0606 Use of similar triangles – needs ³ / ₄ lengths correct. Correct in any form – needs h as subject Needs correct formula
	\rightarrow h = 5(12-r) / 2	A1	Correct in any form – needs h as subject
	Uses V=πr ² h to give	M1	Needs correct formula
	\rightarrow V = π (30r ² -5r ³ /2)	A1	Beware fortuitous answers (AG)
(ii) dV/dr =	= π(60r − 15r²/2)	M1A1	Any attempt to differentiate. co
= 0 wł	hen r = 8 \rightarrow h = 10	DM1	Setting his dV/dr to 0 + attempt.
\rightarrow V :	= 640π or 2010	A1	Correct to 3 or more sig figures
	ne of cone = ⅓π×12²×30 40π or 4520	M1	Anywhere
Ratio	of 4 : 9 or 1 : 2.25 (3 sf)	A1 [10]	Exactly 4:9 or 2.25 to 3 sig figures
M1 for quad	ratic equation		
	ormula.		(2) Factors
	he equation to 0 Ja must be correct and		Sets the equation to 0 Attempts to obtain brackets
	tly used.		Solves each bracket to 0.
Condo	one simple slips in sign.		

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

ADDITIONAL MATHEMATICS Paper 2

Page 1	Mark Scheme Syllabu IGCSE EXAMINATIONS – NOVEMBER 2003 0606	. Age
[4]	Eliminate <i>x</i> or <i>y</i>	M1 Ca
	$\Rightarrow y^2 - 8y + 15 = 0 \qquad x^2 - 10x + 9 = 0$	M1 M1 A1
	Factorise or formula \Rightarrow (1, 3) and (9, 5)	DM1 A1
	Midpoint is (5, 4)	B1 √
[4]	$\cos \theta \left(\frac{1 + \sin \theta - (1 - \sin \theta)}{1 - \sin^2 \theta} = \cos \theta \left(\frac{2 \sin \theta}{1 - \sin^2 \theta} \right) = \frac{2 \sin \theta \cos \theta}{1 - \sin^2 \theta} \right)$	M1 A1
	Use of Pythagoras $\Rightarrow \frac{2\sin\theta\cos\theta}{\cos^2\theta} = 2\tan\theta \Rightarrow k = 2$	B1 A1
[4]	$\log_2 x = 2\log_4 x$ or $\log_4 (x-4) = \frac{1}{2} \log_2(x-4)$	B1
	$2\log_4 x - \log_4 (x - 4) = 2$ or $\log_2 x - \frac{1}{2} \log_2 (x - 4) = 2$	
	Eliminate logs $\frac{x^2}{x-4} = 16$ or $\frac{x}{\sqrt{x-4}} = 4$	M1 A1
	Solve for $x \Rightarrow x = 8$	A1
4] (i)	CB B CC	B2 B1 B1
(ii)	$A \cap B' \cap C'$	
(iii)	$B \cup (A \cap C)$	
[5] (i)	$243x^5 - 405x^4 + 270x^3$	B1 B1 B1
(ii)	Coefficient of $x^4 = (-405 \times 1) + (270 \times 2) = 135$	M1 A1
[6]	At B, $v = 40 (e^{-t} - 0.1) = 0 \implies e^{-t} = 0.1 \implies t = \ln 10 (=2.30)$	M1 A1
	$\int 40 (e^{-t} - 0.1) dt = 40 (-e^{-t} - 0.1t)$	M1 A1
	$AB = \int_{0}^{\log 10} = 40 \left[\left(-\frac{1}{10} - \frac{\ln 10}{10} \right) - (-1) \right] = 4(9 - \ln 10) \approx 26.8$	DM1 A1

			the second		
	Page	2	Mark Scheme Syllabu	Da	
			IGCSE EXAMINATIONS – NOVEMBER 2003 0606	No	2
7 [7	7]		Dealing with elements $\begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}$ and $\begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$	M	emphilip
			$\mathbf{A}^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} \qquad \mathbf{B}^{-1} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$	A1	ACambridge.com
	((i)	$\mathbf{C} = \mathbf{B} - 2\mathbf{A}^{-1} = \begin{pmatrix} 2 & 1 \\ -2 & 3 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -5 & 7 \end{pmatrix}$		A1
	(i	ii)	$\mathbf{D} = \mathbf{B}^{-1}\mathbf{A} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 9 & 5 \\ 14 & 6 \end{pmatrix}$	M1	A1
8 [7	7] ((i)	$\frac{10!}{6!4!} = \frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4} = 210$	M1	A1
1	(i	(ii)	No pink selected i.e. any 6 from (5 + 2) = 7	B1	
1	(i	iii)	All selections contain at least 1 red		
			No yellow selected i.e. any 6 from $(3 + 5) = \frac{8!}{6!2!} = 28$	M1	A1
			At least 1 of each colour – 120 – (7 + 28) = 175	M1	A1
9 [8	3] ((i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{4x-3}\right) = \left(4x-3\right)^{-\frac{1}{2}} \times \frac{1}{2} \times 4$	M1	A1
			$\frac{\mathrm{d}}{\mathrm{d}x}\left((2x+3)\sqrt{4x-3}\right) = \left(2x+3\right)\left(\frac{2}{\sqrt{4x-3}}\right) + 2\sqrt{4x-3}$	M1	A1 √
			$=\frac{12x}{\sqrt{4x-3}} \Rightarrow k=12$	A1	
	(i	(ii)	$\int \frac{x}{\sqrt{4x-3}} \mathrm{d}x = (2x+3)\sqrt{4x-3} \times \frac{1}{12}$ $\int_{1}^{7} = \frac{1}{2} (85-5) = 6\frac{2}{3}$	M1	A1
			$\int_{1}^{7} = \frac{1}{2} (85 - 5) = 6 \frac{2}{3}$	A1	
10 [1	10]	Ι	(i) ∠AOB = 19.2 + 16 = 1.2		A1
1		4	(ii) $DE = 8 \sin 1.2 \approx 7.46$ (iii) $COCE = \sin^{-1}(7.46 \pm 16) \approx 0.485$ (AC)		A1
1		10	(iii) $\angle DOE = \sin^{-1} (7.46 \div 16) \approx 0.485 (AG)$ (iii) Sector DOB = $\frac{1}{2} \times 16^2 \times 0.485 = 62.08$		A1
1		11	(iv) Sector $DOB = \frac{1}{2} \times 16^2 \times 0.485 = 62.08$	M1	
1	1		Length $OE = \sqrt{(16^2 - 7.46^2)} \approx 14.2$	M1	
1	C)	Ó	$\Delta DOE = \frac{1}{2} \times 7.46 \times 14.2 \approx 52.97$	M1	
L			Shaded area $\approx 9.1 - 9.3$ (9.275)	A1	

									Syllabo 0606 R against lg v ints: Straight line $\log R = \log k + \beta \log v$ nt $\approx 1.55 - 1.60$		
Pag	ge 3		Mark Scheme Syllabu								
			IGCS	E EXA	MINATI	ONS – M	NOVEM	BER 2003	0606	Da	
11 [10]		V	5	10	15	20	25	(i) Plotting Ig F	R against lg v	1	an
		R	32	96	180	290	420	Accuracy of po	ints: Straight line	A2,	10
		lg v	0.70	1.00	1.18	1.30	1.40	(ii) $R = kv^{\beta} \Rightarrow$	$\log R = \lg k + \beta \lg v$	B1	
		lg R	1.51	1.98	2.26	2.46	2.61	β = gradie	nt ≈ 1.55 - 1.60	M1	A1
						lg <i>k</i> =	= lg <i>R</i> i	ntercept ≈ 0.4 :	⇒ <i>k</i> ≈ 2.4 - 2.6	M1	A1
	(iii)	lg R	= lg 75	5 ≈ 1.8	$8 \Rightarrow \text{from}$	m grapł	n lg <i>v</i> ≈	0.92 - 0.96 ⇒	<i>v</i> ≈ 8.3 - 9.1	M1	A1
		[Or b	y solvi	ng e.g	., 75	= 2.5 <i>v</i> ¹	^{.58} or	1.88 = 0.4 +	1.58 lg <i>v</i>]		
12 EITHER [11]	(i)	gf <i>(x)</i>	=	$\frac{4}{(3x-2)}$						B1	
		Solve	$ e \frac{4}{4-3} $	$\frac{1}{x} = 2$		[or so	lve fg($x)=3\left(\frac{4}{2-x}\right)-$	- 2 = 2]	M1	
		\Rightarrow x = 2/3							A1		
	(ii)	$f(x) = g(x) \Rightarrow 3x - 2 = \frac{4}{2 - x} \Rightarrow 3x^2 - 8x + 8 = 0$									
		Discriminant = $64 - 96 < 0 \implies$ No real roots						M1	A1		
	(iii)		$x \mapsto (x)$	-						B1	
		<i>y</i> = 4	/ (2 –	<i>x</i>)	\Rightarrow	x = 2 - 4	4/ <i>y</i>	\Rightarrow g ⁻¹ : x +	$\rightarrow 2-4/x$	M1	A1
	(iv)		1		tr					B1	B1
		/		1			2				
				Λ				Lines inte	ersect at (1, 1)	B1	

Pi	age 4	Mark Scheme Syllabu	2
		IGCSE EXAMINATIONS – NOVEMBER 2003 0606	DaC.
12 OR [11]	(i)	$1 - x^{2} + 6x \equiv a - (x + b)^{2} \equiv a - x^{2} - 2bx - b^{2} \Rightarrow a - b^{2} \equiv 1 \text{ and } -2b \equiv 6$	DabaCambridge.com
		[or $1 - x^2 + 6x \equiv 1 - (x^2 - 6x) \equiv 1 - \{(x - 3)^2 - 9\}$]	Com
		\Rightarrow b = -3, a = 10	A1
	(ii)	$1 - x^2 + 6x \equiv 10 - (x - 3)^2 \implies$ Maximum at (3, 10)]
		∴ Single-valued for $x \ge 3$ and hence for $x \ge 4$	M1 A1
	(iii)	$y = 10 - (x - 3)^2 \implies (x - 3)^2 = 10 - y \implies x - 3 = \sqrt{(10 - x)}$	M1
		$\Rightarrow f^{-1}: x \mapsto 3 + \sqrt{(10 - x)}$	A1
	(iv)	When $x = 2$, $g(x) = 9$ and when $x = 7$, $g(x) = -6$	B1
		Range of g is $-6 \le g \le 10$	B1
	(v)	1	B 2, 1, 0