www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2004 question papers

0606 ADDITIONAL MATHEMATICS

0606/01 Paper 1, maximum raw mark 80

0606/02 Paper 2, maximum raw mark 80

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

MANN. BARBCAMBRIDGE COM

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the June 2004 examination.

	maximum	minimum mark required for grade:					
	mark available	Α	С	E			
Component 1	80	53	27	18			
Component 2	80	57	31	21			

Grade A* does not exist at the level of an individual component.

Mark Scheme Notes

- Marks are of the following three types:
- www.PapaCambridge.com Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:
 - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - **BOD** Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- www.PapaCambridge.com MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW −1, 2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation.

www.PapaCambridge.com

JUNE 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS
Paper 1

			The same
Page 1	Mark Scheme	Syllabus	P. 0
	ADDITIONAL MATHEMATICS- JUNE 2004	0606	10.

			The state of the s				
Page 1	Mark Schen	me Syllabus P					
	ADDITIONAL MATHEMAT	ICS- JUNE	2004 0606 1 Tabe				
1. (i) y=(3x-2 dy/dx =	2)÷(x^2+5) = $(x^2+5)3 - (3x-2)2x$ $(x^2+5)^2$	M1 A1	Syllabus P. 2004 0606 1 Formula must be correct - allow unsimplified. Setting to 0 + attempt to solve				
	$15 + 4x - 3x^2 = 0$ when $5/3$ or $x = 3$	M1 A1 [4]	Setting to 0 + attempt to solve. Both correct.				
x = 2 fit	+ 2 = 0 Tries to find a value is $\rightarrow x^2 + 2x - 1 = 0$	M1 A1 M1 DM1 A1 [5]	Equating + attempt at a value by TI Co - allow for (x-2) or for f(2) Must be ÷ by (x-his value) As by quadratic scheme Co				
3. (i)	y = 2x+3 -ve then +ve slope Vertex at (-h,0) y = 1 - x Line, -ve m, (k,0)	B1 DB1 B1 [3]	Must be 2 parts – ignore -2 to -1 V shape-Vertex on -ve x-axis + lines -ve slope, crosses axes at x,y +ve – allow if only in 1 st or 2 nd quadrants				
()	$x + 3 = 1 \rightarrow x = -\frac{2}{3}$ (-0.65 to -0.70) $x+3) = 1 \rightarrow x = -4$ (-3.9 to -4.1)	B1 M1 AI [3]	From graph, or calculation or guess B2 if correct. M mark for any method. Squares both sides M1 quadratic A1 Answers A1				
4. x = asin(bx)+c						
(i) a = 2 a (ii) c = 1	and b = 3	B1 B1 B1	Wrong way round - no marks. No labels - allow B1 if both correct. Co				
(iii) 3	3 cycles (0 to 360) -1 to 3 Period 120° + all correct.	B1 B1 DB1	Even if starting incorrectly. Needs to be marked - allow for any trig graph. Everything in relatively correct position - needs both B's				

Page 2 Mark Scheme Syllabus P				Way.
ADDITIONAL MATHEMATICS ILINE 2004 0606 1	Page 2	Mark Scheme	Syllabus	P S
ADDITIONAL WATHEWATIOS JUNE 2004 0000 1		ADDITIONAL MATHEMATICS- JUNE 2004	0606	1 20

Page 2	Mark Sche ADDITIONAL MATHEMA		Syllabus Pa 2004 0606 1 1 2004
Makes x \rightarrow 5y ² = y Solution \rightarrow (8,-3)	= 0 and 5y + 2x = 1 or y the subject and subs y + 48 or $2x^2 - x = 120$ of quadratic = 0 and (-7.5,3.2) $5^2+6.2^2$) = 16.7	M1 A1 DM1 A1 M1 A1 √ [6]	x or y removed completely – condone poor algebra. A1 co. By scheme for quadratic = 0 Co M mark ind of anything before. A1√ on his 2 points.
_	$ \begin{array}{cccc} .6 & .3 & .1 \\ .5 & .4 & .1 \end{array} \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} $ $ \begin{pmatrix} .6 & .5 \\ .3 & .4 \\ .1 & .1 \end{pmatrix} \begin{pmatrix} 300 \\ 240 \end{pmatrix} $	B2,1.0	For 3 correct matrices – independent of whether they are conformable – allow with or without the factor of 100.
(300 186	$54 \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} or (300 240) \begin{pmatrix} 5 \\ 5.2 \end{pmatrix}$	M1 A1	1 st product. Co. Matrices must be written in correct order – for M mark, the 2x3 or 3x2 must be used.
inal answer	→ \$2748	M1 B1 [6]	2nd product. By any method, inc numerical. Omission of 100 loses last B1 only.
7. R/d	$\frac{\sin\alpha}{7} = \frac{\sin 135}{12}$ $\rightarrow \alpha = 24.4^{\circ}$	B1 M2 A1	Correct triangle of velocities - must be 7,12 and 135° opposite 12. Sine rule used in his triangle. If 45° or 135° between 7 and 12, allow M1 for cos rule, M1 for sine rule Co.
= 20.6°.	Bearing is 020.6°	A1 [5]	Co. Allow 21°.

			4h
Page 3	Mark Scheme	Syllabus	2.0
	ADDITIONAL MATHEMATICS – JUNE 2004	0606	80.

·			8
8. $y = (ax+3)\ln x$ On x-axis, $y = 0$ $ax + 3 = 0 \rightarrow x$ is -ve \rightarrow no soln But $\ln x = 0 \rightarrow x = 1$ $dy/dx = a\ln x + (ax+3).(1/x)$ Use of $m_1m_2 = -1$ Gradient of tangent = -1 \div (-1/5) $\rightarrow a = 2$	M1 A1 M1 B1 M1 A1 A1	[7]	Needs an attempt at solution. Ignore other solutions at this stage. Correct use of "uv" formula. For d/dx(Inx), even if M0 given above. Could equate m with -1 ÷ (dy/dx) Co. Co.
9. (a) $ \left(x - \frac{1}{2x^5}\right)^{18} $ $ {}_{18}C_{15}(x)^{15}(1/2x^5)^3 $ $ \rightarrow 18.17.16(-1/8) \div 6 $ $ \rightarrow -102 $ (b) $ (1 + kx)^n $ $ Coeff of x^2 = {}_{n}C_2k^2 $ $ Coeff of x^3 = {}_{n}C_3k^3 $ Equating and changing to factorials $ \rightarrow k = 3/(n-2) $ or equivalent without factorials	B1 B1 M1 A1	[3] [4]	For ${}_{18}C_3$ or ${}_{18}C_{15}$ For $(\pm 1/2)^3$ – even if in $(1/2x)^3$ Co Co. Co. Needs attempt at nCr Co
10. (i) Area = Δ – sector BCA = π – 1.4 or height = 20sin0.7 $\Delta = \frac{1}{2}.20^{2} \sin(\pi - 1.4)$ or $\frac{1}{2}$ bh = 197.1 Sector = $\frac{1}{2}20^{2}$ 0.7 = 140 Area = 57.1 (ii) DC = 20 x 0.7 (=14) AB = 2 x 20cos0.7 or cos rule BD = AB – 20 = 10.6 Perimeter = 44.6 Could be [5] + [3] if AB used in part (i)	M1 A1 M1 M1 M1 M1 A1	[4]	Award for either of these. Correct method for area of Δ Use of $\frac{1}{2}r^2\theta$ Co Use of $s = r\theta$ Correct trig – could gain this in (i)

Page 4 Mark Schame Sullahua P		
Page 4 Mark Scheme Syllabus Page 4	O.	Page 4
ADDITIONAL MATHEMATICS – JUNE 2004 0606 1	0	

Page 4	Mark Sch	eme		Syllabus	PA A	
	ADDITIONAL MATHEMA	TICS-JUNE	2004	0606	1 9	000
	$-a/x^3 \rightarrow y = \frac{1}{2}ax^{-2} (+c)$	M1 A1	_	pt to integr	ate. Co.	da Cambra
Puts	in $(2, 3.5) \rightarrow 28 = a + 8c$ in $(5, 1.4) \rightarrow 70 = a + 50c$ ion $\rightarrow a = 20, c = -1$	DM1 M1 A1 [5]	+c missing Correct m (beware for N.B: assu	g ethod of so ortuitous an mes a = 20	s points – ev In. Both co. s. a = 20 giv without che (M1A0DM1	cking
A = [$x^{-2} + 1$)dx = $-10x^{-1} + x$ $y^{-1} - [y^{-1}]^2 = -10/p + p + 3$ $y^{-1} - [y^{-1}]^2 = 10/p - p + 3$	M1 A1√ M1 M1	Use of lim or in A+B	(2 to 5). Aw	in either A ard M1 for e	each.
P = v	10 or 3.16	A1 [5]	co (Can get t	nese ii oniy	one integra	auon)
12 EITHER						
	tions – 3 trig, 4 alg, 5 calc 8 from 12.					
(ii) T	C_8 = 495 and A $ ightarrow$ 0 and C $ ightarrow$ 1	M1 A1	₁₂ C ₈ gets M marks.	11. Answer	only gets bo	oth
A	and $C \rightarrow 9$ Total = 10	M1 A1 [4]	Needs to possibilities		dered 2 of th	e
	esses, A \rightarrow H $P_5 = 6720$	M1 A1	Must he al	P ₅ for M1 –	co for A1	
(ii) ½	f_{s} of (i) = 840 or $_{7}P_{4}$ f_{s} of (i) = 4200 or 5 x (ii) or $_{8}P_{5}{7}P_{5}$	M1 A1√ M1 A1√ [6]	Any metho	-	(i) if approp	riate

Page 5	Mark Scheme	Syllabus	P . O
	ADDITIONAL MATHEMATICS-JUNE 2004	0606	1 20
			30

Page	5	Mark Scheme Syllabus Pt				3						
		A[<u> 101TIDC</u>	IAL MA	ATHEMAT	TICS-	JUNE	2004	0606	1	Dan	
(ii) 	lgy = lg m = lgb c = lgA lgy = xla i.e Stra x = 4.5 simulta y, unles	$\begin{array}{c c} 4 \\ 19.4 \\ 1.29 \end{array}$ alues of the second of the sec	6 37.4 1.57 of Igy accurate gb = 1.4 (± = 5.0 (± ae Y = 0)	8 74.0 1.87 eely. : 0.05) : 0.2) 0.301x n part (used a	10 144.4 2.16 (ii) gets	M1 A1 B1 M1 B1 M1 A1	[2] A1	Knows when Don't pen Points con Anywhere Gradient	hat to do. lalise incorrect to ½ si e – even if n measured + measured + o line – give	ect scale. mall square no graph - equated t - equated t	e. o Igb. o IgA.	Abridge com
DM 1 fc	or quac	dratic e	equation	n Faus	ation mus	st be :	set to () if using fo	ormula or fa	ctors		
Formul	·=	nauc c	qualion	п. Ечии	.tion mac		actors	o ii doirig io	india or ia	otors.		
Must be		ct				Mι	ust atte		quadratic in	nto 2 factor	rs.	
– ignor	e arithr	netic a	nd alge	ebraic s	ilips.	Ea	ich fac	tor then eq	uated to 0.			

www.PapaCambridge.com

JUNE 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

ADDITIONAL MATHEMATICS
Paper 2

Page 1	Mark Scheme	Syllabus
	ADDITIONAL MATHEMATICS-JUNE 2004	0606

	4	M1 A1
Page 1	Mark Scheme Syllabus	2.0
	ADDITIONAL MATHEMATICS – JUNE 2004 0606	ASC.
		MA
1 [4]	$(i-7j) + \lambda(0.6i + 0.8j) = 4i + kj$	M1 A
	$1 + 0.6\lambda = 4 \qquad \Rightarrow \qquad \lambda = 5$	
	$-7 + 0.8\lambda \qquad \Rightarrow \qquad -7 + 0.8 \times 5 = -3 = k$	M1 A1
2 [4]	Attempt at cos ⁻¹ 0.3 \Rightarrow [72.5° A0] = 1.266 [5.017, 7.549] accept 1.3	M1 A1
	$x + 1 = 2.532, 10 034, 15.098 \implies x = 14.1 \text{ or better}$	M1 A1
3 [4]	(i) Some vegetarians in the college are over 180 cm tall [or equivalent]	B1
	(ii) No cyclists in the college are over 180 cm tall [or equivalent]	B1
	(iii) $B \cap C$ $\subset A'$ [or equivalent]	B1 B1
4 [4]	$\left(1 + \frac{1}{\cos \theta}\right) \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right) \qquad \Rightarrow \qquad \frac{1 - \cos^2 \theta}{\cos \theta \sin \theta}$	M1 M1
	$1 - \cos^2\theta \equiv \sin^2\theta$ $\frac{\sin^2\theta}{\cos\theta\sin\theta} \rightarrow \tan\theta$ Must be useful use of Pythagoras	B1 A1
5 [5]	$x = \frac{\sqrt{20} \pm \sqrt{20 - (4 \times 2)}}{2} = \sqrt{5} \pm \sqrt{3}$ or $\frac{\sqrt{20} \pm \sqrt{12}}{2}$	M1 A1
	$\frac{1}{\sqrt{5} + \sqrt{3}} + \frac{1}{\sqrt{5} - \sqrt{3}} \qquad [or \frac{2}{\sqrt{20} + \sqrt{12}} + \frac{2}{\sqrt{20} - \sqrt{12}}]$ rationalising each fraction or bringing to common denominator	M1
	Denominator = 2 [or 8] $\Rightarrow \frac{1}{c} + \frac{1}{d} = \sqrt{5}$	A1 A1
6 [6]	(a) $2x^2 - 3x - 14 = 0 \implies (2x - 7)(x + 2) = 0 \implies x = -2, 3.5$	M1 A1
	$\{x: x < -2\} \cup \{x: x > 3.5\}$	A1
	(b) Eliminate $y \Rightarrow x^2 + 4(8 - kx) = 20 \text{ [or } x \Rightarrow \left(\frac{8 - y}{k}\right)^2 + 4y = 20 \text{]}$	M1
	$x^2 - 4kx + 12 = 0$ [or $y^2 + (4k^2 - 16)y + (64 - 20k^2) = 0$]	
	Apply "b ² = 4ac " $16k^2 = 48$ [or $16k^4 = 48k^2$] $\Rightarrow k = \pm \sqrt{3}$	M1 A1

Page 2 Mark Scheme Syllabus ADDITIONAL MATHEMATICS – JUNE 2004 0606			Mark
ADDITIONAL MATHEMATICS – JUNE 2004 0606	Page 2	Mark Scheme	Syllabus
		ADDITIONAL MATHEMATICS- JUNE 2004	0606

		S
7 [6]	(i) $e^{2x-3} (= 7)$ \Rightarrow $x = \frac{1}{2} (3 + \ln 7) \approx 2.47 \sim 2.48 (\text{not } 2.5)$	M1 B1 B1 M1 A1 (M1 for logs
	(ii) $h = 2e^x - 3$ (x, y or) $h > -3$ accept \ge	B1 B1
	(iii) h^{-1} (or y) = $\ln \{\frac{1}{2} (x + 3)\}$ or $\ln(x + 3) - \ln 2$ or $\ln \frac{1}{2} (x + 3)\}$ /lge but $\ln \frac{1}{2} (y + 3)\}$ M1 A0 lg (or log) $\frac{1}{2} (x + 3)\}$ M1 A0	M1 A1 (M1 for logs taken in valid way
8 [8]	(i) $\log_3(2x+1) - \log_3(3x-11) = \log_3\frac{2x+1}{3x-11}$ [Or, later, give M1 for	M1
	$\log_3(\) = 2 \Rightarrow (\) = 3^2$	B1
	$2x + 1 = 9(3x - 11) \qquad \Rightarrow \qquad x = 4$	DM1 A1
ſ	(ii) $\log_4 y = \frac{\log_2 y}{\log_2 4} = \frac{1}{2} \log_2 y$ [or $\log_2 y = \frac{\log_4 y}{\log_4 2} = 2 \log_4 y$]	M1 A1
	$\frac{1}{2} \log_2 y + \log_2 y = 9$ [or $\log_4 y + 2\log_4 y = 9$] $\Rightarrow y = 2^6$ or $4^3 = 64$	DM1 A1
9 [8]	$6 + 4x - x^2 \equiv 10 - (x - 2)^2$	M1 A1
	(i) $x = 2$ $y = 10$ Maximum	B1√B1√B1
	(ii) $f(0) = 6$, $f(2) = 10$, $f(5) = 1$ \Rightarrow $1 \le f \le 10$ [alternatively $1 \le B1$, $\le 10 B1$]	M1 A1
	(iii) f has no inverse; it is not 1:1	B1
10 [10]	(i) $m_{BC} = 3/5$ Equation of AD is $y - 4 = 3/5(x + 2)$	B1 M1 A1
	$m_{AC} = -\frac{1}{4}$ Equation of CD is $y - 2 = 4(x - 6)$	B1 M1 A1
	(ii) Solve $x = 8, y = 10$	M1 A1
	(iii) Length of AC = Length of CD = $\sqrt{68}$	M1 A1
11 [10]	(i) $d/dx (2x-3)^{3/2} = (2x-3)^{1/2} \times 3/2 \times 2$	M1 A1
	$dy/dx = 1 \times (2x-3)^{3/2} + (x+1) \times \{ \text{ candidate's } d/dx (2x-3)^{3/2} \}$	M1
	$= \sqrt{2x-3}\{(2x-3)+3(x+1)\} = 5x\sqrt{2x-3} \implies k = 5$	A1
	(ii) $\delta y \approx dy/dx \times \delta x = (dy/dx)_{x=6} \times p = 90p$	M1 A1
	$(y)_{x=6+p} = (y)_{x=6} + \delta y = 189 + 90p$	A 1√
	(iii) $\int x\sqrt{2x-3}dx = 1/5 (x+1)(2x-3)^{3/2}$	M1

		3	
Page 3	Mark Scheme	Syllabus	
	ADDITIONAL MATHEMATICS- JUNE 2004	0606	

		M1 A1 M1 A1
Page 3	Mark Scheme Syllabus	1.0
	ADDITIONAL MATHEMATICS- JUNE 2004 0606	ASC.
12 [11]	(i) $a = dv/dt = 5e^{-1/2t}$	M1 Man
EITHER	$v = 8 = 10(1 - e^{-1/2 t}) \implies e^{-1/2 t} = 0.2 \implies a = 1$	M1 A1
	(ii) $s = \int v dt = \int (10 - 10 e^{-t/2}) dt = 10t + 20e^{-t/2}$	M1 A1
	$\left[\begin{array}{c} \right]_{0}^{6} = (60 + 20e^{-3}) - (20) \approx 41$	DM1 A1
	(iii) 10 (iv) 10	B1 B2,1,0
	t	
12 [11] OR	(i) $d/d\theta \{(\cos\theta)^{-1}\} = -(\cos\theta)^{-2}(-\sin\theta) = \sin\theta/\cos^2\theta$	M1 A1
	(ii) $AX = 2\sec\theta$ $PX = 2\tan\theta$	B1 B1
	$T = \frac{2 \sec \theta}{3} + \frac{10 - 2 \tan \theta}{5}$	M1 A1
	(iii) $\frac{dT}{d\theta} = \frac{2}{3} \frac{\sin \theta}{\cos^2 \theta} - \frac{2}{5} \sec^2 \theta$	B1 B1√
	= 0 when $5\sin\theta = 3 \implies \sin\theta = 3/5$	M1 A1
	$PX = 2\tan\theta = 2 \times \frac{3}{4} = 1.5$	A1