WWW. Palls

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0606

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – October/November 2010	0606	123

Page 3	Mark Scheme: Teachers' Version	Syllabus
	IGCSE – October/November 2010	0606
The follow	ving abbreviations may be used in a mark scheme or use	d on the scripts:
AG	Answer Given on the question paper (so extra checking the detailed working leading to the result is valid)	d on the scripts: g is needed to ensure that
BOD	Benefit of Doubt (allowed when the validity of a soluticlear)	on may not be absolutely
CAO	Correct Answer Only (emphasising that no "follow throis allowed)	ugh" from a previous error
ISW	Ignore Subsequent Working	
MR	Misread	
PA	Premature Approximation (resulting in basically correct accurate)	work that is insufficiently

Penalties

SOS

MR - 1A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.

See Other Solution (the candidate makes a better attempt at the same question)

- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

		www.
Page 4	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0606

	Page 4		IGCSE – October/November 2010		0606	
					SCS.	1
1	(i) $a = -12, l$	b = -4	B1, B1 [2]	B1 for ea	ach through on their y value	Shio
	(ii) -4		√B1 [1]	Follow t	hrough on their y value	•
2	(i) Graphs		B1 B1	B1 for a	ne correct curve second correct curve consister first curve	nt
	(ii) 3		√B1 [1]	Follow t	hrough on number of clear poi	nts
3	$\frac{\cos x(1+\sin x)}{1-}$ $\frac{2\cos x}{\cos^2 x}$ $2\sec x$	$\frac{1 + \cos x(1 - \sin x)}{\sin^2 x}$	M1 DM1 M1 A1 [4]	fraction DM1 sir	nttempt to get in terms of a sing mplifying numerator blifying denominator	gle
4	x = -1 or 7 or Either (or (or (leading to ($-\frac{1}{2} \operatorname{seen}$ $(x+1)(2x^2 - 13x - 7)$ $(x-7)(2x^2 + 3x + 1)$ $(2x+1)(x^2 - 6x - 7)$ $(x+1)(x-7)(2x+1)$	M1 DM1 A1 DM1, A1 [5]	DM1 for factor	attempt to find a root r attempt to obtain quadratic ect quadratic factor empt to factorise quadratic fac	tor
5	(i) $a = \pi + \frac{\pi}{3}$	$\frac{7}{3}$, $a = \frac{4\pi}{3}$	B1 [1]	Must be	in terms of π	
	GA.	$\cos x + 2\sin x$ $= 2, \Rightarrow \text{grad of normal} = -\frac{1}{2}$ $e^{-\frac{4\pi}{3}} = -\frac{1}{2} \left(x - \frac{\pi}{2} \right)$	M1, A1 M1		attempt to differentiate a produ $m_1m_2 = -1$, must have used tiation	ct
	$\left(2y = \frac{19}{6}\right)$	$\left(\frac{\pi}{x}-x\right)$	M1, A1		attempt at a normal equation, med differentiation, allow ified	nust

		Mark
Page 5	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0606
		S.

			63.
6	(i) $64 - 960x + 6000x^2$	B1, B1, B1 [3]	B1 for each correct term, allow M1 for 2 terms
	(ii) $1 \times (\text{their } x \text{ term}) + \frac{10}{2} \times (\text{their } 64)$) M1	
	-960 + 320 = -640	B1 A1 [3]	B1 for $\frac{10}{2}$ or 5
7	(a) (i) $x = 30^{\circ}, 150^{\circ}$	B1, B1 [2]	B1 for each
	(ii) $x - 30^\circ = 120^\circ, 240^\circ$ $x = 150^\circ, 270^\circ$ $A \cup B = \{30^\circ, 150^\circ, 270^\circ\}$	B1 √B1	B1 for $x = 150^{\circ}$, 270° only Follow through on their A and B
	(b) $\cos 3x = \pm 1 \text{ or } \tan 3x = 0$ $3x = 0^{\circ}, 180^{\circ}, 360^{\circ}, 540^{\circ}$ $x = 0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}$ n(C) = 4	M1 A1 √B1 [3]	M1 for dealing with sec and 3 <i>x</i> A1 for all solutions correct Follow through on their number of solutions
8	(i) and (ii) Gradient = -0.5 Use of ratios or $\ln y = -0.5 \ln x + c$ $\ln y = 6.8$ $\ln y = b \ln x + \ln A$ $A = e^{\text{(their 6.8)}}$ A = 898, b = -0.5	M1 M1 A1 B1 M1 A1, A1	M1 for attempt at gradient M1 for attempt at y intercept A1 for $\ln y = 6.8$ B1 for $\ln y = b \ln x + \ln A$ M1 for use of e A1 for A and A1 for b
9	(i) $A = x^2$, $\Rightarrow \frac{\mathrm{d}A}{\mathrm{d}x} = 2x$	B1 [1]	
	(ii) When $x = 5$, $\frac{dA}{dx} = 10$ $\frac{dx}{dt} = \frac{0.003}{10}$ = 0.0003	√B1 M1 A1 [3]	Follow through on their $\frac{dA}{dx}$ M1 for $0.003 \div \text{their } 10$
	(iii) $V = 4x^3$, $\frac{dV}{dx} = 12x^2$ $\frac{dV}{dt} = 12x^2 \times 0.0003$	B1, B1 M1	B1 for each
	= 0.09	A1 [4]	

		the transfer of the transfer o
Page 6	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0606

				S
10		$\tan\frac{\pi}{6} = \frac{4}{PA}, \ PA = 4\sqrt{3}$	B1	B1 for PA (answer given) B1 for PB (answer given)
		$PB = \frac{4}{\sin\frac{\pi}{6}} + 4$, $PB = 12$	B1	B1 for PB (answer given)
		allow equivalent methods	[2]	
		Sector area = $\frac{1}{2}12^2 \times \frac{\pi}{3}$	√B1	$\sqrt{B1}$ sector area, ft on their PB
		Area of kite = $2 \times \frac{1}{2} \times 4\sqrt{3} \times 4$ Sheded area = 47.7	M1, A1	M1 for attempt to find area of kite or appropriate triangle
		Shaded area = 47.7	A1 [4]	
	(iii)	$P = \left(12 \times \frac{\pi}{3}\right) + 2\left(12 - 4\sqrt{3}\right) + 2(4)$	B1, B1, B1	B1 for each of the 3 terms
		= 30.7	B1 [4]	B1 for final answer
11	(i)	$2(1+x)^{\frac{1}{2}}(+c)$	M1, A1 [2]	M1 for $(1+x)^{\frac{1}{2}}$, A1 for 2
	(ii)	$\frac{dy}{dx} = \frac{2\sqrt{1+x} - 2x\frac{1}{2}(1+x)^{-\frac{1}{2}}}{1+x}$	M1 A2, 1, 0	M1 attempt at differentiation -1 each error
		$=\frac{2}{\left(\sqrt{1+x}\right)}-\frac{x}{\left(\sqrt{1+x}\right)^3}$	A1 [4]	A1 all correct
	(iii)	$\int \frac{x}{\left(\sqrt{1+x}\right)^3} dx = \int \frac{2}{\left(\sqrt{1+x}\right)} dx - \frac{2x}{\sqrt{1+x}}$	M1	M1 for idea of using (ii) 'in reverse'
		$=4\sqrt{1+x}-\frac{2x}{\sqrt{1+x}}(+c)$	A1	A1 all correct
		$\int_0^3 \frac{x}{\left(\sqrt{1+x}\right)^3} dx = (8-3) - (4), = 1$	M1, A1	M1 for attempt evaluation
			[4]	

		MAN
Page 7	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0606
		C

		4	Co.
	EITHER		All.
	(i) $y = \frac{4x^3}{3} - 9x(+c)$	M1, A1	M1 for attempt to integrate
	when $x = 3$, $y = 1$, so $c = -8$	M1, A1 [4]	M1 for attempt to integrate M1 for attempt to find c
	(ii) $4x^2 - 9 = 0$, leads to $x = \pm 1.5$	M1	M1 for attempt to solve $\frac{dy}{dx} = 0$
	Points (1.5, -17), (-1.5, 1)	A1, A1 [3]	A1 for each pair
	(iii) Midpoint AB: (0, -8)	M1	M1 for attempt to find midpoint
	Gradient of AB = -6 , perp grad = $\frac{1}{6}$	M1	M1 for attempt to find grad of perp
	Equation: $x - 6y = 48$	M1, A1 [4]	M1 must be working with perp
12	OR (i) $50 = A + B$ $\frac{dy}{dx} = 2Ae^{2x} - Be^{-x}$ -20 = 2A - B leads to $A = 10$ and $B = 40$	B1 M1 A1 DM1 A1 [5]	M1 for attempt to differentiate A1 all correct DM1 for attempt to solve equations.
	(ii) $\frac{dy}{dx} = 20e^{2x} - 40e^{-x}$, $20e^{2x} = 40e^{-x}$ $e^{3x} = 2$ $x = \frac{1}{3} \ln 2$ or 0.231 y = 47.6	M1 M1 M1 A1 [4]	M1 for equating to zero and attempt at solution M1 for dealing with exponentials M1 for attempt to obtain <i>x</i> A1 for both
	(iii) $\frac{d^2 y}{dx^2} = 40e^{2x} + 40e^{-x}$ Always +ve, so min	M1 A1 [2]	M1 for attempt at second derivative or other valid method A1 for a correct conclusion