UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papaCambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	
	IGCSE – October/November 2010	0606	Ø,

Mark Scheme Notes

Marks are of the following three types:

- aCambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	S.	
	IGCSE – October/November 2010	0606	No.	-

The following abbreviations may be used in a mark scheme or used on the scripts:

- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4		abus a er
	IGCSE – October/November 2010 06	506 Pag
		Sing.
-1.5 Solve $2x + 10$ -8.5	$= -7 \text{ or } (2x + 10)^2 = 49$	abus 506 aba er 506 Macambridg A1 [3]
8 + 4a - 30 + b	3) or long division to remainder b = 0 or $4a + b = 22+ b = 75$ or $9a + b = 57$	M1 A1 A1
	eous equations	M1 A1 [5]
	$= e^{-34k}$ using ln or log correctly	M1
k = 0.0204	4 or $\frac{1}{34} \ln 2$	A1
(ii) $e^{kt} = 5 \text{ or } e^{kt}$	$e^{-kt} = 0.2$ with k numerical	B1
$t = \frac{1}{k} \ln 5$	with k numerical	M1
79		A1 [5]
$(5 \ 1 \ -2) \begin{pmatrix} 7 \\ 1 \\ 2 \end{pmatrix}$	$ \begin{array}{cccc} 6 & 5 \\ 3 & 5 \\ 1 & 0 \end{array} \begin{pmatrix} 0.2 \\ 0.3 \\ 0.5 \end{array} \text{ or } (0.2 & 0.3 & 0.5) \begin{pmatrix} 7 & 1 & 2 \\ 6 & 3 & 1 \\ 5 & 5 & 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix} $	B1
Matrix multipl	ication using 3×3 matrix	M1
(32 31 30)	or $\begin{pmatrix} 5.7\\ 3.6\\ 0.7 \end{pmatrix}$ (or transposed)	A1
Matrix multipl 30.7	(0.7) ication of 1×3 with 3×1	DM1 A1 [5]
Eliminate y $x^2 + (8 - m)x + $	9 = 0	M1 A1
Use $b^2 * 4ac$ Reach $(8 - m)$ (* is either > o	* $\pm 6 \text{ or solves } m^2 - 16m + 28 * 0$ r =)	DM1 DDM1
m = 2 and 14 m < 2, m > 14		A1 A1

Pa	ge 5	Mark Scheme: Teachers' version	Syllabus	er er
		IGCSE – October/November 2010	0606	Da
				Ca.
(i)	$7 \times 6 \times 5 \times$	4		76.
	840			19
		2		Dana Cambridg M1
(ii)	$2 \times 6 \times 5 \times$	4 or $\frac{2}{7} \times (840)$		M1
	240			A1
(iii)	$2 \times 5 \times 4 \times$	2 or $\frac{2}{6} \times (240)$ or clear indication of method		M1
	80	0		A1
	00			[6]
(i)	V = (45 - 2)	(2x)(60-x)x		M1
	Correctly r	each $V = 2700x - 165x^2 + 2x^3$		A1 ag
(ii)	$\left(\frac{\mathrm{d}V}{\mathrm{d}}\right) = 27$	$00-330x+6x^2$		B2,1,0
	Solve 3 ter	m quadratic expression for $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$.		M1
	10 only	άλ		A1
	5			[6]
(i)	$21a^2 = 1a^2$) or $21a^2 - 1a^2^2$		B1
(I)	$2 \lg 3 = \lg 9$ $1 = \lg 10$	θ or $2\lg 3 = \lg 3^2$		B1
	e e	s correctly to eliminate logs (e.g. $9(5x + 10) = 10($	(4r + 12))	M1
	x = 6	(0.2, 0.2, 0.2) = 10	[1 <i>A</i> · 1 <i>2</i>]]	A1
(ii)	Express in	powers of 3 $\left(\frac{3^{4y}}{3^{7-y}} = \frac{3^{4y+3}}{3^{3(y-2)}}\right)$		M1
	•	use rules of indices		M1 A1
	<i>y</i> = 4			[7]

Pa	ge 6 Mark Scheme: Teachers' version	Syllabus er
	IGCSE – October/November 2010	0606 7330
)	OR	Syllabus 0606 Phocennitics
	$\frac{\sin \alpha}{80} = \frac{\sin 60}{250}$ $\alpha = 16.1$	M1
	$\beta = 104$	A1 A1√
	$v^{2} = 80^{2} + 250^{2} - 2 \times 80 \times 250 \times \cos \beta$ or $\frac{v}{\sin \beta} = \frac{250}{\sin 60} \left(= \frac{1}{2} + 1$	$\left(\frac{80}{\sin\alpha}\right)$ DM1
	v = 280(.2)	A1
	$t = \frac{500}{v}$	DM1
	1 hour 47 minutes or 107 mins	A1 [7]
l 0 (i)	$m_{AB} = \frac{1}{5}$	B1
	Use $m_1m_2 = -1$ in equation for $BC[y-5 = -5(x-6) \text{ or } 5x + C(7,0)]$	
	Use $m_{CD} = m_{AB}$ and point <i>C</i> in equation of line	M1
	<i>CD</i> : $y(-0) = \frac{1}{5}(x-7)$ or $x - 5y = 7$	A1
(ii)	At $D x = 1$	M1
	At $D y = -1.2$ Method for area not involving measuring	A1 M1
	28.6	A1 [9]
1 (i)	$\tan x = 0.6$	B1
	31(.0) or 30.96() 211 (= 31 + 180)	$egin{array}{c} B1 \ B1 \end{array}$
(ii)	Use $\cos^2 y = 1 - \sin^2 y$	M1
	$2\sin^2 y + \sin y - 1 = 0$ Solve 3 term quadratic for sin y	A1 M1
	30 and 150 270	A1 B1
(iii)	$\cos z = 0.3$	B1
	1.27	B1 B1
	5.02 or 5.01 (= $2\pi - 1.27$)	BIV [11]

Page 7	Mark Scheme: Teachers' version IGCSE – October/November 2010	Syllabus er
	IGCSE – October/November 2010	0606 733
2E		MAB.
(i) fg(9) =	f(4) evaluated or fg(x) = $\left(\frac{3x+5}{x-1}+1\right)^2 - 4$	M
21		Syllabus 0606 A1
(ii) Metho		M1
	$\sqrt{x+4}-1$	A1
Put y	$=\frac{3x+5}{x-1}$ and rearrange	M1
$g^{-1}(x) =$	$=\frac{x+5}{x-3}$	A1
(iii) Rearra	nge two of $\frac{3x+5}{x-1} = \frac{x+5}{x-3} = x$ to quadratic equation	M1
$2(x^2 - 4)$	4x - 5) = 0	A1
Solve 3 5 only	term quadratic	M1
2 only		A1 [10]
20		
(i) 4		B1
(ii) Differe	ntiate v to find an expression for a	M1
6 - 8 s		Al
	ute $t = 5$	DM1
10.3 to	10.4	A1
(iii) 14		B1
(iv) Integra	te v to find an expression for s	M1
	$+2\sin 2t$	A1
	nits 4 and 5	DM1
23.9		A1
		[10]