UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/22

Paper 2 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0607	22

a)	9	B1	
o)	$3c^2$	B2	B1 for $3c^k$ or kc^2
a)	81	B1	Ignore extra terms
o)	3^{n-1} oe	B2	If B0 award SC1 for any power of 3 in terms of n E.g. 3^n or 3^{n+1}
	15	B2	If B0 award M1 for $360 \div 24$ soi or $\frac{(n-2)\times 180}{n} = 156 \text{oe seen}$ [2]
a)	1, 2, 3, 4, 6, 12	B1	
o)	3	B1ft	Strict ft from (a). [2]
a)	3	B1	
o)	For correct use of $n\log a = \log a^n$ For correct use of $\log a + \log b = \log ab$ or	M1	E.g. log2 ³ , log8, log5 ² , log25
	$\log a - \log b = \log \frac{a}{b}$	M1	Using their figures
	log50 www3	A1	[4]
	$\frac{3a}{(a-3)(a+3)} \times \frac{(a-3)}{a}$	M1M1	M1 for correct factorizing of $a^2 - 9$, M1 for inverting second fraction (with x)
	$\frac{3}{a+3}$ final answer	A1	
	www3		[3]
a)	$\begin{pmatrix} 3 \\ -4 \end{pmatrix}$	B2	Award B1 for each correct number
D)	5	B2ft	Not ± 5 If B0 award M1 for their 3^2 + their $(\pm 4)^2$ Ignore absence of brackets. Final answer of ± 5 or 25 implies M1.
a)	$12\sqrt{2}$	B2	If B0 award B1 for $4\sqrt{2}$ seen
o)	$\frac{9\sqrt{2}+6}{7}$ or $\frac{3(3\sqrt{2}+2)}{7}$	B2	If B0 award M1 for intention of multiplying numerator and denominator by $3 + \sqrt{2}$ [4]
		30) $3c^2$ 10) 3^{n-1} oe 15 15 10) $1, 2, 3, 4, 6, 12$ 30) 3 For correct use of $n\log a = \log a^n$ For correct use of $\log a + \log b = \log ab$ or $\log a - \log b = \log \frac{a}{b}$ $\log 50$ www3 $\frac{3a}{(a-3)(a+3)} \times \frac{(a-3)}{a}$ $\frac{3}{a+3} \text{ final answer}$ www3 10) $\binom{3}{-4}$ 15	30 3 e^2 B2 B1 B1 B2 B2 B2 B2 B3 B1 B2 B2 B3 B2 B4 B2 B5 B2 B6 B2 B7 B2 B8 B2 B8 B2 B9 B2 B1 B1 e B1 B1 e B1 B1 e B2 B1 B1 B1 e B2 B1 B1 B1 e B1 B1 e B2 B1 B1 B1 e B1 B1 e B2 B2 B1 B1 e B1 B1 e B2 B2 B1 B1 e B1 B1 e B2 B1 B1 B1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0607	22

	T		T
9	a = 1, b = 2, d = 8	В3	After B0, award wwwSC2 for a, b, d such
	or positive multiples of the above. E.g. $a = 2$, $b = 4$, $d = 16$		that $a:b:d = 1:2:8$. E.g. $a = \frac{1}{2}$, $b = 1$, $d = 4$
			or $a = -1$, $b = -2$, $d = -8$. After SC0, award M1 for $a : b = 1 : 2$,
			OR
			M1 for gradient = $\frac{-1}{2}$, (implied by
			$y = \frac{d}{b} - \frac{1}{2}x \text{ oe or } y = -\frac{1}{2}x + c \text{ oe}$
			(condone $c = d$) or $a = \pm \frac{1}{2}$)
			OR
			M1 for substitution of (2, 3) in their equation form
			E.g. $2a + 3b = d$, (oe) or $3 = -\frac{1}{2}x^2 + c$, (oe)
			[3]
10 (a)	2m+3p	B1	
(b)	m = 2, p = 3	В4	B1 for $6m + 2p = 18$ seen M1ft for correct method to eliminate one letter. Allow one numerical slip. A1, A1 www for answers
11	$\frac{-\sqrt{3}}{2}$	B2	If B0 scored, award B1 for $(x =) 150$, or SC1 for $\frac{\sqrt{3}}{2}$ or 0.866
			[2]
12 (a)	Sketch y 4 3 0 1	P2	For P marks condone absence of numbers only if axes are sectioned. P1 for x and y intercepts given P1 for smooth curve with maximum at $y = 4$. (Curve must go below $y = 0$ and be the correct shape) If P0, P0 scored then award SC1 for correct shape correctly positioned.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0607	22

(b)	a = -1	B1	If B0, B0, award M1 for two of
			9a - 3b + 3 = 0 oe,
	b = -2	B1	a + b + 3 = 0 oe or $4 = a - b + 3$ and correct
			method to eliminate a or b . (Allow one
			numerical slip.)
			OR
			M1 for complete correct alternative method
			to evaluate a or b . (Allow one numerical
			slip.)
			E.g. y = a(x - p)(x - q)
			y = a(x3)(x - 1)
			3 = ax3x - 1
			a = -1
(c)	$f(x) \le 4$		Accept $y \le 4$
			Not $x \le 4$ or $y < 4$
			[5]