MARK SCHEME for the October/November 2012 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/04 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0607	04

1 (a) (b) (c) (d) (e) (f)	$\begin{aligned} & 50 \\ & 2 \\ & 1.88 \text { o.e. } \\ & 3 \\ & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Seen and not spoiled
2 (a) (i) (ii) (iii) (iv) (v) (b) (i) (ii)	1.5 o.e. $200 \div(3+2) \times 3$ o.e. 129.6(0) final answer 86.44 (or $86.4(0)$ or 86.444 to 86.445) $1.0395^{2}=1.08056 \ldots$ i.e. $8.056 \ldots$ interest $>$ 8% o.e. 19440 9	1 1 2 2 2 2 M1 A1	If work backwards M1 for 3:2 = 120:80 and for $120+80=200$, either order. Allow 5 for $3+2$. M1 for $\frac{120 \times 4 \times 2}{100}$ o.e. (9.6) M1 for $80(1.0395)^{2}$ o.e. not spoiled Any full and accurate explanation will often use values from earlier working. Must compare interest with interest or amount with amount. If $\mathbf{0}, \mathbf{M 1}$ for method but lacking accuracy or full details and methods may be seen in (iii) and/or (iv). Use of different principals $\mathbf{0}$ (unless finding interest or amount as percentage of each principal) M1 for 24000×0.9^{2} o.e. Allow 19400 full marks M1 for $24000 \times 0.9^{n}=10000$ o.e. including repeated multiplication by 0.9 8.31 or $8.309 \ldots$ or 10330 to 10331 or 9298 imply M1 SC1 for answer 9 without working or without wrong working
$3 \text { (a) (i) }$ (ii) (iii)	$\begin{aligned} & 1947 \\ & 0.001947 \quad(0.00195 \text { or } 0.001947 \ldots) \\ & 1.6[0](1.596 \text { to } 1.599) \end{aligned}$	4 1 FT 1 FT	M1 for $\frac{2}{3} \pi 4.8^{3}$, M1 for $\pi 4.8^{2} .23 .7$, A1 for 1947. ... or 1950, B1 for their volume rounded to nearest cubic centimetre. FT their (i) $\div 100^{3}$ FT their (ii) $\times 820$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0607	04

(b)	1.40 www	5	M1 for $2 \pi 4.8^{2}$ (144.7 to 144.8 or 145) M1 for $\pi 9.6 \times 23.7$ o.e. (714.7 to 714.9 or 715) M1 for $\pi 4.8^{2}$ (72.38 to 72.40) not subtracted M1 for $\times 0.15$ and $\div 100$ 1.4 or 1.397 to $1.400 \ldots$ implies M4 figs 14 or 1397 to $1400 \ldots$ or total surface area $=931.4$ to 932.4 or 296.64π or $296.6 \ldots \pi$ or 297π implies M3
$4 \quad \text { (a) }$	72	2	M1 for $360 \div$ their $(180-175)$ (not 175 or negative) or for $\frac{180(n-2)}{n}=175$ o.e.
(b) (i)	58	3	$\begin{aligned} & \text { B1 for } x=32 \text {, } \\ & \text { M1 for } 0.5(180-2 \text { their } x) \quad \text { Allow on } \\ & \text { diagram } \end{aligned}$
(ii)	Clear explanation using correct vocabulary supported by values in working or on diagram. allied o.e. angles not 180°, alternate angles not equal, corresponding angles not equal etc. $\text { e.g } 74+96 \neq 180,74 \neq 64 \text { etc. }$	2 FT	FT x only B1 for values of angles being used stated or seen in diagram.
(c) (i)	75	1	Allow on diagram B1 for angle $C A B=27$. Allow on diagram.
(ii)	12	3	B1 for angle $O A B$ or angle $O B A=15$. Allow on diagram
$5 \quad \text { (a) }$	16.9 (16.87...)	2	M1 for $0.5 \times 7 \times 7.5 \sin 40$ Any other method must be complete Must see method if grads or radians used.
(b)	4.98 (4.981....)	3	M1 for $7^{2}+7.5^{2}-2 \times 7 \times 7.5 \cos 40$ A1 for 24.81 to $24.82 \ldots$ or 24.8 Must see method if grads or radians used.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0607	04

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0607	04

8 (a) (i) (ii) (b) (c) (d)	 $(0.75,1.75)$ o.e. 0.375 o.e. $y=-x+2.5$ o.e. (e.g. $2 x+2 y=5$) cao	1 1 1 2 FT 3 FT	line through approx $(0,1)$ and $(1,2)$ condone freehand line through approx $(0,2)$ and $\left(1,1 \frac{2}{3}\right)$ condone freehand M1 for $0.5 \times(1) \times$ their 0.75 o.e. FT their x-coordinate only FT their (b) B1 for gradient $=-1$, implied by $y=-x+c$ M1 for correct use of their $(0.75,1.75)$ in linear equation e.g. $\frac{y \text {-their } 1.75}{x-\text { their } 0.75}=-1 \quad$ or their $1.75=-1($ their 0.75$)+c$
9 (a) (b)	$\begin{aligned} & 330(330.125,330.1,330.12,330.13) \\ & 4 \text { correct widths } \\ & \text { Heights } 0.065,0.19,1.66,1.4 \end{aligned}$	2 $\begin{aligned} & \mathbf{1} \\ & \mathbf{3} \end{aligned}$	M1 for at least 3 mid-values soi (100, $250,325,375,450$) B2 for 3 correct, B1 for 2 correct. Accuracy - touching line of 1.4 and $0.05 \leqslant h<0.1,0.15<h \leqslant 0.2$, $1.65 \leqslant h<1.7$ i.e. only touching nearest horizontal line. Condone freehand If no diagram, SC2 for 4 correct frequency densities.
10 (a) (b)	-4.37 (-4.372...), 1.37 (1.372...) or $\frac{-3 \pm \sqrt{33}}{2}$ o.e. Mark final answer $x \leqslant-4.37(-4.372 \ldots), x \geqslant 1.37(1.372 \ldots)$	M1 B1B1 $2 \mathrm{FT}$	Full method e.g. graph showing intersections with x-axis or full explicit formula correctly applied No working can only score B1B1 FT only if outside parts of a parabola. Condone $<,>$. Allow in words if clear. If $\mathbf{B 0}, \mathbf{S C 1}$ for region shown on sketch

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0607	04

11 (a) (b)	19 $4 x^{2}+14 x+14$ o.e. final answer	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	B1 for $[g(2)]=2^{2}+2+2$ soi e.g. $f(8)$ M1 for $(2 x+3)^{2}+(2 x+3)+2$ soi B1 for $(2 x+3)^{2}=4 x^{2}+6 x+6 x+9$ soi
(c) (d) (i) (ii)	$\frac{x-3}{2}$ o.e. final answer 13 -3	1 2	M1 for swapping x and y or $y-3=2 x$ or $\frac{y}{2}=x+\frac{3}{2}$ i.e. correct first step M1 for $2(2 x+3)+3=2 x+3$ or $\mathrm{f}(x)=x$ or $2 x+3=x$
12 (a) (i) (ii) (b)	Reflection only, $y=-x$ o.e. Stretch only, y-axis o.e. invariant, (factor) 3 Correct rotation	3 2	Extra transformations invalidate all marks B1 B1 B1 Extra transformations invalidate all marks SC1 for rotation clockwise 90° about other point or 90° anti-clockwise about $(1,-1)$
13 (a) (i) (ii) (b) (c)	$\begin{aligned} & \frac{10}{x+3} \\ & \frac{10}{x+3}+\frac{4}{x}=1 \text { o.e. } \\ & 10 x+4(x+3)=x(x+3) \text { or } \\ & 10 x+4 x+12=x^{2}+3 x \text { o.e. } \\ & x^{2}-11 x-12=0 \\ & (x-12)(x+1) \end{aligned}$ 40	1 M1 E2 2 2 FT	Final equation reached with at least 1 intermediate step with brackets or 5 terms without any errors or omissions E1 if one error or omission but still at least 1 intermediate step with brackets or 5 terms SC1 for $(x+a)(x+b)$ where $a b=-12$ or $a+b=-11$ isw solutions FT $10 \div$ (a positive $x+3) \times 60$ but x from their factors. M1 for $10 \div($ a positive $x+3) \times 60$ but must be correct from (b) If two positive roots, allow either. If only negative roots M0

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0607	04

14 (a) (i)				
(ii)	$\left.\begin{array}{l}\text { Translation only } \\ 60 \\ 0\end{array}\right)$ o.e.		Translated by approx 60° to right B1 for translation of middle branch approx. 60° to right	
(b)	$-120^{(0)}, 60^{(0)}$ final answers	B's independent Allow in words e.g. $60^{(\circ)}$ to right		

