MARK SCHEME for the October/November 2012 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/04 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper		
			IGCSE – October/November 2012		0607	04	
1	(a)	50		1			
	(b)	2		1			
	(c) 1.8		3 o.e.	Seen and not spoiled			
	(d) 3			1			
	(e)	6		1			
	(f)	1		1			
2	(a) (i)	1.5	o.e.	1			
	(ii)	200	$\div (3+2) \times 3$ o.e.	1	If work backwards M1 for $3:2 = 120:80$ and for $120 + 80 = 200$, either order. Allow 5 for $3 + 2$.		
	(iii)	129	.6(0) final answer	2	M1 for $\frac{120 \times 4 \times 2}{100}$ o.e. (9.6)		
	(iv)	86.4	14 (or 86.4(0) or 86.444 to 86.445)	2	M1 for $80(1.0395)^2$ o.e. not spoiled		
	(v)	1.03	895 ² = 1.08056 i.e. 8.056 interest > o.e.	2	Any full and accurate explanation – will often use values from earlier working. Must compare interest with interest o amount with amount. If 0 , M1 for method but lacking accuracy or full details and methods may be seen in (iii) and/or (iv). Use of different principals 0 (unless finding interest or amount as percents of each principal)		
	(b) (i) 19		440	2	M1 for 24 000 \times 0.9 ² o.e. Allow 19 400 full marks		
	(ii)	9		M1 A1	M1 for $24000 \times 0.9^n = 10000$ o.e. including repeated multiplication by 0.9 8.31 or 8.309 or 10330 to 10331 or 9298 imply M1 SC1 for answer 9 without working or without wrong working		
3	(a) (i)	194	7	4	M1 for $\frac{2}{3}\pi 4.8^3$, M1 for 1947 or 195 volume rounded to ne centimetre.	for $\pi 4.8^2.23.7$, 50, B1 for <i>their</i> arest cubic	
	(ii)	0.00	01947 (0.00195 or 0.001947)	1 FT	FT <i>their</i> (i) $\div 100^3$		
	(iii)	1.6[0] (1.596 to 1.599)	1 FT	FT <i>their</i> (ii) × 820		

Page 3			Mark Scheme			Syllabus	Paper
		IGCSE – October/November 2		2012		0607	04
		<u> </u>		гг			
	(b)	1.40	WWW	5	M1 for $2 \pi 4.8^2$ (144.7 to 144.8 or 145) M1 for $\pi 9.6 \times 23.7$ o.e. (714.7 to 714.9 or 715) M1 for $\pi 4.8^2$ (72.38 to 72.40) not subtracted M1 for $\times 0.15$ and $\div 100$ 1.4 or 1.397 to 1.400 implies M4 figs 14 or 1397 to 1400 or total surface area = 931.4 to 932.4 or 296.64 π or 296.6 π or 297 π implies M3		
4	(a)	72		2	M1 for $360 \div their (180 - 175)$ (not 175 or negative) or for $\frac{180(n-2)}{n} = 175$ o.e. B1 for $x = 32$, M1 for $0.5(180 - 2 their x)$ Allow on diagram		
	(b) (i)	58		3			
	(ii)	Clea supp diag allie not etc. e.g	ar explanation using correct vocabulary borted by values in working or on rram. d o.e. angles not 180°, alternate angles equal, corresponding angles not equal $74 + 96 \neq 180, 74 \neq 64$ etc.	2 FT	FT B1 stat	x only for values of angle ted or seen in diagra	s being used am.
	(c) (i)	75		1	Allow on diagram B1 for angle $CAB = 27$. Allow on diagram.		
	(ii)	12		3	B1 for angle OAB or angle $OBA = 15$. Allow on diagram		
5	(a)	16.9	0 (16.87)	2	M1 me Mu use	for $0.5 \times 7 \times 7.5$ s thod must be complist see method if graded.	in40 Any other lete ads or radians
	(b)	4.98	s (4.981)	3	M1 A1 Mu use	l for $7^2 + 7.5^2 - 2$ for 24.81 to 24.82. ist see method if graded.	\times 7 \times 7.5 cos 40 or 24.8 ads or radians

Page 4		Mark Scheme	Syllabus	Paper		
		IGCSE – October/November 2	0607	04		
6	(a)		5	B1 for branch approx to left of $x = -$ correct shape B1 for branch approx to right of $x = 3$ correct shape B1 for branch approx between x = -2, $x = 3$ correct shape B1dependent if outside branches approach <i>x</i> -axis from above B1dependent if middle branch belo <i>x</i> -axis Allow touching <i>x</i> -axis at ends Pen - 1 if branches joined		
	(b)	x = -2, x = 3, y = 0	3	B1 B1 B1		
	(c)	$y \le -0.64$ y > 0	3	M1 for finding max point, implied by -0.64 . condone < Allow $f(x)$ or <i>x</i> for <i>y</i> and ignore inclusion of -2 and/or 2 condone \ge		
	(d)	<i>y</i> > 0	1	Condone ≥		
	(e) (i)		2	B1 for correct shape cutting <i>x</i> -axis B1dependent for nothing to left of <i>y</i> -axis		
	(ii)	0.225 (0.2249 to 0.2250), 4.08 (4.078)	2	B1 B1		
	(iii)	4.08 (4.078)	1 FT	B1 FT <i>their</i> relevant	root from (e)(ii)	
7	(a) (i)	E	1			
	(ii)	\subset or \subseteq	1			
	(iii)	ϕ or $\{ \}$	1			
	(iv)	U	1			
	(b) (i) t, u, v, w, x			Lists can be in any or	der	
	(ii)	<i>t</i> , <i>w</i>	1			
	(iii)	<i>l</i> , <i>m</i>	1			
	(iv)	<i>n</i> , <i>t</i> , <i>u</i> , <i>w</i> , <i>y</i>	1			

Page 5			Mark Scheme	Syllabus	Paper				
			IGCSE – October/November	0607	04				
8	(a) (i) (ii)			1	line through approx (0, 1) and (1, 2) condone freehand line through approx (0, 2) and $(1, 1\frac{2}{3})$ condone freehand				
	(b)	(0.7	5, 1.75) o.e.	1					
	(c)	0.37	5 o.e.	2 FT	M1 for $0.5 \times (1) \times their 0.75$ o.e. FT their <i>x</i> -coordinate only				
	(d)	<i>y</i> =	-x + 2.5 o.e. (e.g. $2x + 2y = 5$) cao	3 FT	FT their (b) B1 for gradient = -1 , implied by y = -x + c M1 for correct use of their (0.75, 1.75) in linear equation e.g. $\frac{y - their 1.75}{x - their 0.75} = -1$ or their 1.75 = $-1(their 0.75) + c$				
9	(a)	330	(330.125, 330.1, 330.12, 330.13)	2	M1 for at least 3 mic 250, 325, 375, 450)	l-values soi (100,			
	(b)	4 co Heiş	rrect widths ghts 0.065, 0.19, 1.66, 1.4	1 3	B2 for 3 correct, B1 for 2 correct. Accuracy – touching line of 1.4 and $0.05 \le h < 0.1, 0.15 < h \le 0.2,$ $1.65 \le h < 1.7$ i.e. only touching nearest horizontal line. Condone freehand If no diagram, SC2 for 4 correct frequency densities.				
10	(a)	-4.2 -3 Mar	37 (-4.372), 1.37 (1.372) or $\frac{\pm \sqrt{33}}{2}$ o.e. k final answer	M1 B1B1	Full method e.g. grap intersections with <i>x</i> -a formula correctly ap No working can on	oh showing axis or full explicit plied y score B1B1			
	(b)	<i>x</i> ≤	$\leq -4.37 (-4.372), x \geq 1.37 (1.372)$	2 FT	FT only if outside parts of a parabola. Condone <, >. Allow in words if clear. If B0 , SC1 for region shown on sketch				

Page 6			Mark Scheme		Syllabus	Paper	
			IGCSE – October/November 2012		0607	04	
		r					
11	(a)	19		2	B1 for $[g(2)] = 2^2 + 2^2$	+ 2 soi e.g. f(8)	
	(b) $4x^2$		+14x+14 o.e. final answer	3	M1 for $(2x+3)^2 + (2x+3)^2$	for $(2x+3)^2 + (2x+3) + 2$ soi	
					B1 for $(2x+3)^2 = 4x^2$	$x^{2} + 6x + 6x + 9$	
					soi		
	(c)	<i>x</i> –	³ a a final answer	2	M1 for swapping <i>x</i> and	dy or y - 3 = 2x	
		2			or $\frac{y}{x} = x + \frac{3}{2}$ i.e. correct first step		
					2 2	i i i i i i i	
	(d) (i)	13		1			
	(ii)	- 3		2	M1 for $2(2x+3)+3 =$	= 2x + 3 or	
12	(a) (i)	Refl	lection only, $y = -x$ o.e.	2	Extra transformations	invalidate all	
					marks		
	(ii)	Stre	tch only, y-axis o.e. invariant, (factor) 3	3	B1 B1 B1 Extra transformations		
					invalidate all marks		
	(b)	Correct rotation		2	SC1 for rotation clockwise 90° about		
					other point or 90° anti- $(1, -1)$	-clockwise about	
12	(a) (i)	10		1			
13	(a) (l)	$\frac{10}{r+}$	3	1			
	(**)	10	$\frac{4}{100}$	N/I			
	(11)	\overline{x} +	$\frac{3}{3} + \frac{1}{x} + \frac{1}{3} + \frac{1}$	IVII	T 1 1 1		
		10x	+4(x+3) = x(x+3) or +4x+12 $x^2 + 2x = 2$		Final equation reached 1 intermediate step with	l with at least th brackets or	
		10x	+4x+12 = x + 5x o.e.		5 terms without any er	rors or omissions	
	x^2		-11x - 12 = 0	E2	E1 if one error or omis	ssion but still at	
					least 1 intermediate ste	ep with brackets	
			10.77 1.				
	(b)	(<i>x</i> –	(-12)(x+1)	2	SC1 for $(x + a)(x + b)$ or $a + b = -11$	where $ab = -12$	
					isw solutions		
	(c)	40		2 FT	FT 10 \div (a positive x $+$	$+3) \times 60$ but x	
	(-)				from <i>their</i> factors .	.,	
					MI1 for $10 \div$ (a positive must be correct from ($e x + 3) \times 60$ but b)	
					If two positive roots, a	llow either.	
					If only negative roots 1	M0	

Page 7	Mark Scheme	Mark Scheme			Paper
	IGCSE – October/November 2012			0607	04
14 (a) (i)		2	Translated B1 for tran approx. 60	l by approx of nslation of n 0° to right	60° to right niddle branch
(ii)	Translation only $\begin{pmatrix} 60 \\ 0 \end{pmatrix}$ o.e.	B1 B1	B 's indepe Allow in v	endent vords e.g. 60	O ⁽⁰⁾ to right
(b)	$-120^{(\circ)}$, $60^{(\circ)}$ final answers	2	- 1 each in answers of SC1 for (o.e.	ncorrect extraction extraction of the doma $-120, \sqrt{3}$)	the but isw any in and (60, $\sqrt{3}$)