MARK SCHEME for the May/June 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06 Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	06

A - INVESTIGATION: DIAGONALS OF RECTANGLES			
(a) (b)		$\begin{gathered} \text { B1 } \\ \text { B1 FT } \end{gathered}$	
2 (a) (i) (ii) (iii) (b) (i) (ii) (c)	$\begin{aligned} & x-1 \\ & y-1 \\ & x+y-2 \\ & N+1 \text { o.e. } \\ & x+y-1 \text { o.e. } \end{aligned}$ diagonal drawn with the 12 squares marked on the diagonal. $8+5-1=12$	B1 B1 B1 B1 B1 B1 B1	Accept (i) and (ii) swapped correct answer only $8+5=13 \text { and } 13-1=12$ Must use (b)(ii) If 0 then $\mathbf{S C} 1$ for 12 seen.
3 (a) (i) (ii) (b) (i) (ii)	12 squares clearly marked on the diagram. $\begin{aligned} & 9+6-1=14 \text { o.e. } \\ & 3 \times 4=12 \text { seen or implied } \\ & {[3 \times 60=] 180} \end{aligned}$ $[5 \times 18=] 90$	C1 C1 R1 B2 	2 simultaneous intersections marked. FT their $\mathbf{2}$ (b)(ii) $\neq 12$ Accept $3 \times(3+2-1)$ but not $9+6-3$ B1 for 60 seen Accept using $x+y-3$ or $x+y$-common factor o.e. Without wrong working. Communication mark for numerical method used in either (i) or (ii) e.g. Common factor $=$ 3 soi and $3 \times(31+30-1)$ o.e. Common factor $=$ 3 soi and $93+90-3$ B1 for 18 seen Without wrong working.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	06

$\left.\begin{array}{|l|l|c|l|}\hline \mathbf{4} & \begin{array}{l}6 \times 1,5 \times 2,4 \times 3 \\ 6 \times 2 \\ 6 \times 3 \\ 6 \times 6\end{array} & \mathbf{B 3} & \begin{array}{l}\text { soi by diagrams in the answer } \\ \text { space } \\ 5+2-1 \text { etc. is insufficient } \\ \text { B1 for any one row } \\ \text { B2 for two or three rows } \\ \text { Communication mark for } \\ \text { showing correct numerical } \\ \text { method or statement once. } \\ \text { e.g. } x+y-1=S, S=6 \\ \text { OR } x+y=7 \\ \text { OR } 5+2-1=6 \\ \text { But not } 5+2=7-1=6\end{array} \\ \text { Deduct 1 for each incorrect extra } \\ \text { rectangle, but ignore repeated } \\ \text { rectangles. }\end{array}\right]$

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	06

B - MODELLING: DRILLING A TUNNEL			
1	583[.09...]	2	M1 for $500^{2}+300^{2}$ Communication mark for correct method, use of square root and no bad form seen.
2	800	1	
(a) (b)	$500-x$ seen as a distance $\left[\mathrm{PC}^{2}=\right] 300^{2}+x$ $\text { time }=\frac{\text { their distance }}{\text { speed }} \text { soi }$ time added to change the drill's direction	R1 R1 R1 R1	$\frac{500-x}{2}$ on its own does not gain credit. Explanation with numerator $=$ distance and denominator $=$ speed Any reason for extra time related to the context, not 'rounding', 'incorrect' or 'different' numbers.
(c)		G1	Shape continuous curve required. Minimum in the left half. and not more than 1 cm from $T=500$
(d) (i)	173	G1	Reaches T axis between 500 and 600 Dependent on shape (but not the restrictions) Not less than $1 / 2 \mathrm{~cm}$ from 500 or 600 . If not B3 then B1 173 B1 510 SC2 for $173.2 \ldots$ and $509.8 \ldots$ OR $173 \ldots$ and $509.8 \ldots$ OR $173.2 \ldots$ and 510
(ii)	510	3	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	06

4 (a) (b) (i) (ii)	$\begin{aligned} & (500-x)+3 \sqrt{90000+x^{2}} \text { o.e. } \\ & 106 \\ & 1350000 \end{aligned}$	B1 B1 B1 FT B1 FT	SC1 Thousands included in the expressions. Ignore subsequent working. FT answers between 0 and 500 from their (a) of similar form producing a graph with a minimum. Accept 105.5 to 106.499 ... FT (b)(i) from their (a) of similar form. Accept 1350 thousand. Accept range from 1348000 to 1349000
5 (a) (b)	x stays the same o.e. Substitute $x=173[.2 \ldots]$ in $\begin{aligned} T & =\frac{d-x}{2}+\sqrt{90000+x^{2}} \text { o.e. } \\ & =\frac{d}{2}-86.5+346.4[\ldots] \\ & =\frac{d}{2}+260 \end{aligned}$ OR One substitution of a minimum to check that $T=\frac{d}{2}+260$ Two more substitutions of minima.	B1 M1 A1 [B1] [B1]	$x=173$ on its own is insufficient. Communication: method description or substitution of a $d>500$ soi Accept 346.3[...] 259.8 to 259.9 instead of $-86.5+$ 346.4[...] e.g. substituting 500 and/or their answer to 3(d)(iii)
		1	Communication seen in $\mathbf{1}$ or 5(a).
TOTAL		20	

