MARK SCHEME for the May/June 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/43 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	43

1 (a) (b) (c)	8 0.25 o.e. $\frac{1024}{y^{2}} \text { or }\left(\frac{32}{y}\right)^{2}$	3 2 3FT	M1 for $\frac{k}{\sqrt{x}}$ A1 for $\mathrm{k}=32$ B1FT for $\sqrt{x}=\frac{\text { their } 32}{64}$ FT k or incorrect k only $(k \neq 1)$ for answer but the Ms still available M1 for multiplication by \sqrt{x} o.e. M1 for division by o.e. M1 for squaring
(a) (b)	Attempt to get 2 equations for elimination Correct addition/subtraction of their equations $\begin{aligned} & x=-2 \\ & y=-4 \end{aligned}$ Equation $x=$ or $y=$ from one equation Correct substitution into other equation $\begin{aligned} & x=-2 \\ & y=-4 \end{aligned}$ Sketch of both lines $\begin{aligned} & x=-2 \\ & y=-4 \end{aligned}$	3 M1 M1 B1 B1 or [M1 M1 B1 B1] or [M2 B1 B1]	B2 for $4 x=10^{3}$ or $\log x=2.3979 \ldots$ B1 for $\log \left(\frac{36 x}{9}\right)$ o.e. or $1.5563 \ldots$ $-0.9542 \ldots+\log x=3 \text { о.e. }$ Allow one numerical error in one of these two lines. Allow one numerical error in one of these two lines. Answers without any working must be both correct and score B2 only.
3 (a) (b) (c) (d)	$A \cap B \cap C$ o.e. $A \cap C \cap B^{\prime}$ o.e. $(A \cup B)^{\prime} \cap C$ o.e. e.g. $A^{\prime} \cap B^{\prime} \cap C$ $\left(B \cap C \cap A^{\prime}\right) \cup\left(A \cap(B \cup C)^{\prime}\right)$ o.e.	1 1 1 2	B1 for either bracket correct
4 (a)	$\begin{aligned} & \frac{4.5}{7}=\frac{x}{(x+8)} \text { o.e. } \\ & 4.5(x+8)=7 x \text { o.e. } \\ & 2.5 x=36 \\ & {[x=14.4] \quad \text { (Answer Given) }} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { E1 } \end{gathered}$	Must see a correct middle line

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	43

(b)	211 or 210.6 to 211.1 www 3	3	M1 for $\frac{1}{3} \pi \times 3.5^{2} \times 22.4$ (287 or 287.3 to 287.4) M1 for $\frac{1}{3} \pi \times 2.25^{2} \times 14.4$ (76.4 or 76.34 to $76.35 \ldots$..) (M2 for 67.16π to 67.17π or $\frac{403}{6} \pi$ or $67 \frac{1}{6} \pi$)
5 (a) (b)	$[y]=10 x^{2}+x-5[=0] \quad \text { o.e. }$ Correct graph sketched or $\begin{aligned} & \frac{-1 \pm \sqrt{(1)^{2}-4(10)(-5)}}{2(10)} \\ & -0.76,0.66 \\ & x>0.66, \quad x<-0.76 \end{aligned}$	B1 B1 B1,B1 2FT	B2 for sketch of $10 x^{2}$ and $5-x$ together or $\pm \sqrt{\frac{201}{400}}-\frac{1}{20}$ from completing the square If $\mathbf{B 0}, \mathbf{S C 1}$ for -0.759 or -0.7589 to -0.7588 and 0.659 or 0.6588 to 0.6589 B1FT for each part, if two solutions to part (b)
6 (a) (b) (c)	$(-6,-2)$ $(2,6)$ Reflection $y=-x$	$\begin{gathered} 1 \\ 1 \\ 1,1 \end{gathered}$	
7 (a) (b) (c)	$\begin{aligned} & x=-2, x=2, y=0 \\ & -2.33(-2.330 \ldots), 0.202(0.2016 \ldots), 2.13 \\ & (2.128 \ldots) \end{aligned}$	4 $\begin{aligned} & 1,1,1 \\ & 1,1,1 \end{aligned}$	B1 Correct graph for $x>2$ B1 Correct graph for $x<-2$ B1 Correct graph for $-2<x<2$ B1 Approx correct intercepts pen-1 if branches joined.
8 (a) (b) (c)	$75.5(75.52 \ldots)$ 20.33 6.78 or 6.776 to 6.778	3 2	M2 for $[\cos =] \frac{7^{2}+6^{2}-8^{2}}{2.6 .7}$ or M1 for $8^{2}=7^{2}+6^{2}-2 \times 6 \times 7 \times \cos x$ M1 for $0.5 \times 6 \times 7 \times \sin ($ their 75.5$)$ A1 20.3 or 20.33.... M1 for $\sin ($ their 75.5$)=\frac{h}{7}$ or $0.5 \times 6 \times h=$ their 20.33 o.e.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	43

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	43

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0607	43

14 (a) (i)	Points correctly plotted	3	B2 for 5 correct points or B1 for 3 or 4 correct points
(ii)	Positive	1	
(b) (i)	22.3	1	
(ii)	436	1	
(c) (i)	$19.8 x-4.78$	2	B1 for $k x-4.78$ or $\mathbf{B 1}$ for $19.8 x+k$ SC1 for $20 x-4.8$
(ii)	410 or 411 or 410.1 to $411.0 \ldots$.	1FT	(19.76 to 19.77, -4.778 to -4.777)
(iii)	628 or 629 or 627.5 to $628.8 . \ldots$.	1FT	
(iv)	(c)(ii) AND this is within the data range o.e.	2	E1 for reasonable statement
15 (a)	$\begin{array}{ll} 1458 & \\ 2 \times 3^{n} & \text { o.e. } \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 for $k \times 3^{n}$ or $k \times 2^{n-1}$
(b)	${ }_{n^{2}-n-1} \text { o.e. }$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{3} \end{aligned}$	M2 for $a n^{2}+b n+c$ with a $\neq 0$ and both b and c not 0 . or M1 for differences of 2 seen or $a n^{2}$

