CANDIDATE NAME

CENTRE NUMBER

CAMBRIDGE INTERNATIONAL MATHEMATICS

Paper 4 (Extended)

Candidates answer on the Question Paper.
Additional Materials: Geometrical Instruments
Graphics Calculator

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, highlighters, glue or correction fluid.
You may use a pencil for any diagrams or graphs.
DO NOT WRITE IN ANY BARCODES.
Answer all the questions.
Unless instructed otherwise, give your answers exactly or correct to three significant figures as appropriate.
Answers in degrees should be given to one decimal place.
For π, use your calculator value.
You must show all the relevant working to gain full marks and you will be given marks for correct methods, including sketches, even if your answer is incorrect.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 120 .

This document consists of 19 printed pages and 1 blank page.

Formula List

For the equation

$$
a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Curved surface area, A, of cylinder of radius r, height h.
Curved surface area, A, of cone of radius r, sloping edge l.
Curved surface area, A, of sphere of radius r.

Volume, V, of pyramid, base area A, height h.

Volume, V, of cylinder of radius r, height h.

Volume, V, of cone of radius r, height h.

Volume, V, of sphere of radius r.

$A=2 \pi r h$
$A=\pi r l$
$A=4 \pi r^{2}$
$V=\frac{1}{3} A h$
$V=\pi r^{2} h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area }=\frac{1}{2} b c \sin A
\end{aligned}
$$

Answer all the questions.
1 (a) (i) Kim's wage is $\$ 720$ each month.
She spends $\$ 196$ each month on food.
Calculate $\$ 196$ as a percentage of $\$ 720$.

> Answer(a)(i) \% [1]
(ii) She pays 25% of the $\$ 720$ in taxes.

Find the ratio money spent on food:money paid in taxes.
Give your answer in its simplest form.

Answer(a)(ii)
.................. :
....................
(iii) The $\$ 720$ is an increase of 44% on Kim's previous wage.

Calculate her previous wage.

> Answer(a)(iii) \$
(iv) Next year the $\$ 720$ will increase by 4%.

Calculate next year's monthly wage.

> Answer(a)(iv) \$
(b) Jay's monthly wage is $\$ 650$.

Each year Jay's monthly wage increases by 5%.
Calculate the number of years it will take for Jay's monthly wage to exceed $\$ 1000$.

2 (a)

The areas of the rectangles are equal.
Find the value of x.
Show all your working.
(b)

NOT TO
SCALE

Find the value of y when $\tan \theta=\frac{1}{3}$.
Show all your working.
(c) Jo walks 10 km at w kilometres per hour. Sam cycles 10 km at $(w+9)$ kilometres per hour.
The difference between the times taken by Jo and Sam is $2 \frac{1}{2}$ hours.
(i) Show that $w^{2}+9 w-36=0$.
(ii) Find the time, in hours and minutes, taken by Jo to walk the 10 km .

(a) Find the equation of the line L.

> Answer(a)
(b) (i) On the grid, draw the line $y=2 x+4$.
(ii) On the grid, shade the region where $y \geqslant 0$ and $y \geqslant 2 x+4$.
(c) P is the point $(1,-4)$ and Q is the point $(3,2)$.

Find the equation of the line passing through P and Q.

4 The masses of 100 apples are measured.
The results are shown in the table.

Mass (m grams)	$20<m \leqslant 100$	$100<m \leqslant 150$	$150<m \leqslant 240$
Frequency	28	45	27

(a) Calculate an estimate of the mean mass.

> Answer(a)
(b) Use the information in the table to complete the histogram.

The diagram shows some straight line distances between Bangkok (B), Hanoi (H), Phnom Penh (P) and Kuala Lumpur (K). Angle $B H P=30^{\circ}$.
(a) Calculate $B P$ and show that it rounds to 535 km , correct to the nearest kilometre.
(b) Calculate angle $B K P$.
(c) The bearing of P from K is 020°.

Find the bearing of B from K.

6

The diagram shows a triangular prism of length 20 cm .
The cross-section of the prism is triangle $A B C$ with angle $B A C=90^{\circ}, A C=6 \mathrm{~cm}$ and $A B=12 \mathrm{~cm}$.
(a) Calculate the volume of the prism.
(b) (i) Calculate the total surface area of the prism.

Answer(b)(i)
cm^{2}
(ii) The surface of the prism is painted at a cost of $\$ 0.005$ per square centimetre.

Calculate the cost of painting the surface of the prism.

Answer(b)(ii) \$
(c) Calculate the angle between the diagonal line $C Q$ and the base $A B Q P$.

7 A flight from London, England to Auckland, New Zealand departs at 1400 on February 7th.
The journey takes $27 \frac{1}{2}$ hours and the distance is 18400 km .
The time in New Zealand is 13 hours ahead of the time in England.
(a) Find the time and the date that the flight arrives in Auckland.

Answer(a) Time
Date
(b) Calculate the average speed of the journey.

Answer(b)
km/h
(c) The cost of a ticket for the flight is 3600 pounds (£). $£ 1=2.09$ New Zealand dollars (NZD).
(i) Calculate the cost of the ticket in NZD.

> Answer(c)(i)

NZD [1]
(ii) Calculate the cost of the journey, in NZD per kilometre.

Give your answer correct to 2 decimal places.
\qquad

8 (a) Solve the equation $\frac{2}{x}=x^{3}+2$.

```
Answer(a) x=
    or }x
```[4]
(b) Solve the inequality \(\frac{2}{x} \geqslant x^{3}+2\).

\(A B\) is a chord of the circle centre \(O\).
Calculate
(a) the length of the chord \(A B\),

> Answer(a) .. cm [3]
(b) the length of the arc \(A B\),

Answer(b)
cm [2]
(c) the area of the shaded region.

(a) On the diagram, sketch the following graphs.
(i) \(y=\mathrm{f}(x)\)
(ii) \(y=\mathrm{g}(x)\)
(b) Write down the equation of the line of symmetry of the graphs.
Answer(b)
(c) Write down the co-ordinates of the local minimum point on the graph of \(y=\mathrm{f}(x)\) for \(0^{\circ} \leqslant x \leqslant 360^{\circ}\).
Answer(c) (................... ,)
(d) Write down the period and amplitude of \(\mathrm{g}(x)\).
\[
\begin{aligned}
\text { Answer }(d) \text { period } & =\text {....................................... } \\
\text { amplitude } & =\text {.. }
\end{aligned}
\]
(e) Write down the range of \(\mathrm{g}(x)\) for the following domains.
(i) \(0^{\circ} \leqslant x \leqslant 360^{\circ}\)
Answer(e)(i)
(ii) \(\mathbb{R}\)
Answer(e)(ii)
(f) Solve the equation \(\mathrm{f}(x)=\mathrm{g}(x)\) for \(0^{\circ} \leqslant x \leqslant 360^{\circ}\).
\[
\begin{equation*}
\operatorname{Answer}(f) x= \tag{2}
\end{equation*}
\]
\(\qquad\) or \(x=\)
(g) Shade the regions on the diagram where \(y \leqslant \mathrm{f}(x)\) and \(y \geqslant \mathrm{~g}(x)\).

The diagram shows a disc, with six equal sectors, and an arrow.
When the disc is spun, each sector is equally likely to stop next to the arrow.
(a) The disc is spun.

Write down the probability that the sector next to the arrow is labelled with
(i) 1 or 2,
Answer(a)(i)
(ii) an even number,
Answer(a)(ii)
(iii) a number which is a factor of 10 .
Answer(a)(iii)
(b) The disc is spun twice.
(i) Complete the tree diagram by writing the missing probabilities on each branch.
first number
second number

(ii) Find the probability that the arrow is next to the number 10 twice.

> Answer(b)(ii)
(iii) Find the probability that the arrow is next to the number 10 at least once.

> Answer(b)(iii)
(c) The disc is spun \(n\) times until it stops with the number 10 next to the arrow.

Find \(n\) when the probability that this happens is \(\frac{625}{7776}\).
\[
\text { Answer(c) } n=
\]
\begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
\hline Temperature \(\left(t^{\circ} \mathrm{C}\right)\) & 13 & 13 & 15 & 16 & 19 & 23 & 25 & 26 & 24 & 20 & 18 & 13 \\
\hline Rainfall \((r \mathrm{~mm})\) & 59 & 49 & 62 & 46 & 25 & 6 & 1 & 3 & 28 & 62 & 63 & 66 \\
\hline
\end{tabular}

The table shows the average monthly temperature, \(t\), and rainfall, \(r\), in Malaga, Spain.
(a) Find the mean, median, upper quartile and range of the average monthly temperatures.
\[
\begin{aligned}
& \text { Answer(a) mean }=\text {... }{ }^{\circ} \mathrm{C} \\
& \text { median }= \\
& { }^{\circ} \mathrm{C} \\
& \text { range }= \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\]
(b) (i) Find the equation of the line of regression for this data, giving \(r\) in terms of \(t\).
\[
\text { Answer(b)(i) } r=
\]
(ii) Describe the type of correlation between \(r\) and \(t\).
Answer(b)(ii)
(iii) Calculate an estimate of the rainfall when the temperature is \(22^{\circ} \mathrm{C}\).
Answer(b)(iii)

\section*{NOT TO \\ SCALE}

The diagram shows a triangle \(O P Q\).
The point \(X\) is on \(P Q\) so that \(P X: X Q=1: 2\).
\(\overrightarrow{O P}=\mathbf{p}\) and \(\overrightarrow{O Q}=\mathbf{q}\).
(a) Find \(\overrightarrow{O X}\) in terms of \(\mathbf{p}\) and \(\mathbf{q}\).

Give your answer in its simplest form.
\[
\text { Answer(a) } \overrightarrow{O X}
\]
(b) \(O Q Y\) is a straight line and \(O Y=2 O Q\).

Find \(\overrightarrow{X Y}\) in terms of \(\mathbf{p}\) and \(\mathbf{q}\).
Give your answer in its simplest form.
\[
\begin{equation*}
\text { Answer(b) } \overrightarrow{X Y} \tag{3}
\end{equation*}
\]
(c) \(\mathbf{p}=\binom{3}{k}\) and \(|\mathbf{p}|=5\).

Find the two possible values of \(k\).
\(\qquad\) or \(k=\)

\section*{BLANK PAGE}

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.```

