CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER				

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/02
Paper 2 (Extended)
October/November 2013 45 minutes

Candidates answer on the Question Paper.
Additional Materials: Geometrical Instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, highlighters, glue or correction fluid.
You may use a pencil for any diagrams or graphs.
DO NOT WRITE IN ANY BARCODES.
Answer all the questions.

CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.
You must show all the relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 40 .

Formula List

For the equation

$$
a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Curved surface area, A, of cylinder of radius r, height h.

Curved surface area, A, of cone of radius r, sloping edge l.

Curved surface area, A, of sphere of radius r.

Volume, V, of pyramid, base area A, height h.

Volume, V, of cylinder of radius r, height h.

Volume, V, of cone of radius r, height h.

Volume, V, of sphere of radius r.

$A=2 \pi r h$
$A=\pi r l$
$A=4 \pi r^{2}$
$V=\frac{1}{3} A h$
$V=\pi r^{2} h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area }=\frac{1}{2} b c \sin A
\end{aligned}
$$

Answer all the questions.

1 Solve the simultaneous equations.

$$
\begin{aligned}
3 g-2 h & =11 \\
g-2 h & =5
\end{aligned}
$$

$$
\text { Answer } \begin{aligned}
g & = \\
h & =
\end{aligned}
$$

2 (a)

$\mathrm{n}(\mathrm{U})=20, \mathrm{n}(A \cup B)^{\prime}=3, \mathrm{n}(A)=11, \mathrm{n}(B)=13$.

Find $\mathrm{n}\left(A \cap B^{\prime}\right)$.

Answer (a)
(b) On each Venn diagram, shade the region indicated.
$(P \cap Q)^{\prime}$

$S \cup T^{\prime}$

3 Tiago buys a concert ticket and then sells it for $\$ 15$.
He makes a profit of 20%.
Calculate how much Tiago paid for the ticket.

NOT TO
SCALE
$A B C D$ is a parallelogram and $B Q P C$ is a rhombus.
$D C E$ is a straight line.
Angle $D A B=52^{\circ}$ and angle $E C P=36^{\circ}$.
Find the size of angle $B P C$.
Answer

5 (a) Simplify $\sqrt{72}$.
(b) $\frac{\sqrt{2}+2}{\sqrt{2}-1}=p+q \sqrt{2}$

Find the values of p and q.

$$
\begin{aligned}
\operatorname{Answer}(b) \quad p & = \\
q & =
\end{aligned}
$$

6 Simplify the following.
(a) $2 y^{2} \times 3 y^{3}$

Answer(a)

(b) $\sqrt[3]{27 p^{27}}$

7 (a) Find the amplitude and period of the function $\mathrm{f}(x)=4 \cos (4 x)$.

$$
\begin{align*}
\text { Answer(a) } \text { Amplitude } & = \\
\text { Period } & = \tag{2}
\end{align*}
$$

(b)

$$
\mathrm{g}(x)=4 \cos (4 x)-4
$$

Describe fully the single transformation that maps the graph of $y=\mathrm{f}(x)$ onto the graph of $y=\mathrm{g}(x)$.

Answer(b) \qquad
...

8 (a) Write down the value of $8^{\frac{1}{3}}$.

Answer(a)
(b) Find the exact value of $\left(\frac{4}{3}\right)^{-2}$.

9

NOT TO
SCALE

The diagram shows a cube of side length 1 .
Find the value of $\tan x^{\circ}$.

10

NOT TO
SCALE

Find the exact value of x.

11

NOT TO
SCALE
$A B C D$ is a parallelogram.
$D M=M C$ and $C N=2 N B$.
$\overrightarrow{A B}=\mathbf{p}$ and $\overrightarrow{A D}=\mathbf{q}$.
(a) Write down $\overrightarrow{C N}$ in terms of \mathbf{q}.

Answer(a)
(b) Find $\overrightarrow{M N}$ in terms of \mathbf{p} and \mathbf{q}.

$$
f(x)=3 x-1
$$

$$
\mathrm{g}(x)=12-x
$$

Find
(a) $\mathrm{f}(\mathrm{g}(8))$,

$$
\text { Answer }(a)
$$

(b) $\mathrm{f}(\mathrm{g}(x))$, in its simplest form,
Answer(b)
(c) $\mathrm{g}^{-1}(x)$.

$$
\operatorname{Answer}(c) \mathrm{g}^{-1}(x)=
$$

