MARK SCHEME for the October/November 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06 Paper 40 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0607	06

A	A INVESTIGATION SUMS OF SEQUENCES					
1		108 ÷ 27 [= 4]	1			
2	(a) (i)	21.42, 38.32, 59.74, 98.06	1			
	(ii)	4 www	1FT	FT their total ÷ their 5th number		
	(b) (i)	Candidate's own negative sequence correct	1			
	(ii)	4 www	1	Dep on (b)(i) correct		
3	(a)	p+2q+2p+3q $3p+5q$	1,1	Accept different order		
	(b)	8p + 12q oe isw or $5p + 7q$ plus their $3p + 5q$ or 4 times 5 th term	1FT	FT their 6th term in 3(a) C opportunity		
	(c)	$2p + 3q = \frac{8p + 12q}{4}$ OR $8p + 12q = 4(2p + 3q)$ isw				
		$OR \ \frac{8p+12q}{2p+3q} = 4$	1			
4	(a)	5p + 8q 8p + 13q 13p + 21q 21p + 34q	2FT	FT their previous 6th term in p and q in 3(a) B1 for any two correct including after incorrect FT If 0 scored SC1 for explicit sum of 2 previous terms not totalled for all 4 correct		
	(b)	55p + 88q oe isw	1	C opportunity		
	(c)	$5p + 8q = \frac{55p + 88q}{11}$ OR 11(5p + 8q) = 55p + 88q isw				
		OR $\frac{55p + 88q}{5p + 8q} = 11$	1			

	Page 3	Mark Scheme	Syllabus	Paper		
		IGCSE – October/November 2013		0607	06	
5 ((a) $34p + 55q 55p + 89q 89p + 144q 144p + 233q$		2FT	 FT their previous 9th and 10th terms in p and q in 4(a) B1 for any two correct including after incorrect FT If 0 scored SC1 for explicit sum of 2 previous terms not totalled for a 4 correct 		
((b)	377p + 609q oe isw	1	C opportunity		
((c)	29 soi	1	C opportunity		
((d)	377p + 609q = 29 (13p + 21q) seen oe	1	SC1 if this stater and not here	ment seen in (c)	
6		[sum of first 10 terms =] 11 times 7th term [sum of first 14 terms =] 29 times 9th term [sum of first 18 terms =] 76 times 11th term	1			
		Communication seen in one of 3(b) 4(b) 5(b) 5(c)	1			
		Total	20			

	Page 4	Mark Scheme IGCSE – October/November 2013				Syllabus 0607	Paper 06	
B								
1	(a)	THE EARTH'S TEMPERATURE 10 correctly plotted points $\pm 1 \text{mm}$ $\begin{pmatrix} \tau & 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ R & R \\ $			P2 D1	P1 for 8 or 9 correct points ± 1 mm D1 for smooth curve through plotted points		
	(b) (i) $T = aN^b$ (ii) $0.03 = a [\times] 40^b$ $0.1 = a [\times] 80^b$ isw (0.03 = $a \times 40^b$) ÷ ($0.1 = a \times 80^b$) oe isw		1 1 1			
	(iv) (v)	[b =] 1.73696 co [a =] (4.88 to 4.9	-		1 1	C opportunity C opportunity		
	(vi)	(vi) $T = (4.9 \times 10^{-5}) \times N^{1.74}$ Substitute $N = 60$ to give $T \approx 0.06$ (0.0606 - 0.0609) isw			1FT	FT their <i>a</i> in par	t (v)	
2	(a) (i)	Number of years since 1860 (N)3040	Temperature Increase °C (<i>T</i>) 0.02 0.03	log <i>T</i> -1.70 - 1.52				
		50 60	0.04	-1.4[0]				
		70	0.08	-1.1[0]				
		80	0.10	-1[.00] -0.89				
		100	0.18	-0.74				
		110	0.24	-0.62				
		120	0.32	-0.49	2	-1 eeoo		

Page 5	Mark Scheme		Syllabus	Paper	
	IGCSE – October/November 2013		0607	06	
(ii)	9 correctly plotted points $\pm 2 \text{ mm}$ log $T \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$				
	-0.5 0 20 40 60 80 100 120 140 160 -1 -1.5 -2 -2.5 N	P1			
(iii)					
	-25 N	1	Line (within tole mean (within –1)		
(iv)	FT from <i>their</i> line of best fit in part (iii) Correct to 1dp	2FT	M1 reading log 2 their graph ± 2 mm Line must reach If 0 scored in (iii M1 only	160	
(b) (i)	[m =] 0.006 to 0.018	1	2 points on the li	or working using ne	
(ii)	[$c =$] -2.4 to -1.7 FT from <i>their m</i> and <i>c</i> in (i), substituted in model Accuracy to 1dp	1 1FT	C opportunity C opportunity		
(iii)	Comment on 2020 being outside range of given data	1			
	Communication seen in one of 1(b)(iv) 1(b)(v) 2(b)(i) 2(b)(i)	1			
	Total	20			