CANDIDATE NAME

CENTRE NUMBER					

CANDIDATE NUMBER

CAMBRIDGE INTERNATIONAL MATHEMATICS

Paper 2 (Extended)
For Examination from 2010
SPECIMEN PAPER
45 minutes
Candidates answer on the Question Paper
Additional Materials: Geometrical Instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, highlighters, glue or correction fluid.
You may use a pencil for any diagrams or graphs.
Answer all the questions.

CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.
You must show all relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 40 .

This document consists of $\mathbf{7}$ printed pages and $\mathbf{1}$ blank page.

Formula List

For the equation $\quad a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Curved surface area, A, of cylinder of radius r, height $h . \quad A=2 \pi r h$
Curved surface area, A, of cone of radius r, sloping edge $l . \quad A=\pi r l$
Curved surface area, A, of sphere of radius r.

$$
A=4 \pi r^{2}
$$

Volume, V, of cylinder of radius r, height h.
$V=\pi r^{2} h$

Volume, V, of pyramid, base area A, height h. $V=\frac{1}{3} A h$

Volume, V, of cone of radius r, height h. $V=\frac{1}{3} \pi r^{2} h$

Volume, V, of sphere of radius r. $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area }=\frac{1}{2} b c \sin A
\end{aligned}
$$

Answer all the questions.

1 Write down the value of
(a) 7^{-2},
Answer(a)
(b) $64^{\frac{1}{3}}$.

2 The graphs shown are translations of the graph of $y=x^{2}$.
Write down their equations.
(a)

Answer(a) $y=$
(b)

Answer(b) $y=$

3 Solve $2 \sin x^{\circ}=1$ for $0 \leqslant x \leqslant 360$.

4 Solve the simultaneous equations.

$$
\begin{aligned}
& 3 x+2 y=7 \\
& 5 x+3 y=12
\end{aligned}
$$

```
Answer x =
                                    y=

5 Solve the equation
\[
2 x^{2}+11=x+21
\]

6 (a) Write down the value of \(\log _{2} 8\).
\begin{tabular}{|c|c|c|}
\hline & & For Examiner's Use \\
\hline Answer(a) & [1] & \\
\hline
\end{tabular}
(b) Simplify as far as possible \(\log 12+\log 3-2 \log 6\).
\(7 \quad\) Simplify
(a) \(\sqrt{12}\),

Answer(a)
(b) \(\sqrt{12}+\sqrt{48}\),
(c) \(\frac{\sqrt{48}}{\sqrt{12}}\).

8 For the set of data
\(\begin{array}{llllllllll}1 & 2 & 4 & 5 & 6 & 8 & 9 & 9 & 10 & 12\end{array}\)
find
(a) the mean,

> Answer(a)
(b) the mode,

Answer(b)
(c) the median,
Answer(c)
(d) the lower quartile.

9 For the sequence \(2,7,14,23,34,47, \ldots \ldots\).
(a) find the next two terms,

> Answer(a)
(b) find a formula for the \(n\)th term.

10 The graphs (a) to (f) below show some of the following functions (A to H ).
A \(\mathrm{f}(x)=4-2 x\)
B \(\mathrm{f}(x)=2^{x}\)
C \(\mathrm{f}(x)=x^{2}-4 x+4\)
D \(\mathrm{f}(x)=\cos x\)
E \(\quad \mathrm{f}(x)=2^{-x}\)
F \(\mathrm{f}(x)=\frac{4}{x}\)
G \(\quad \mathrm{f}(x)=|x-3|\)
H \(\mathrm{f}(x)=\sin 2 x\)

Match each graph with its correct function.







Answer(a)

Answer(b)

Answer (c)

Answer(d)

Answer(e)

Answer(f)

\section*{BLANK PAGE}

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.```

