MARK SCHEME for the October/November 2015 series

0444 MATHEMATICS (US)

0444/43

Paper 4 (Paper 4 (Extended)), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0444	43

Q	uestion	Answer	Mark	Part marks
1	(a) (i)	3.9[0]	2	M1 for 2.6 ÷ 2
	(ii)	$\frac{13}{18}$ cao	2	B1 for any correct unsimplified fraction
	(iii)	24	3	M2 for 9 ÷ 0.375 oe or M1 for associating 9 with (100 – 62.5)%
	(b)	109 cao	3	B2 for 108.5 to 108.6 or M1 for 250 × $\left(1 - \frac{8}{100}\right)^{10}$ oe
2	(a) (i)	Image at (-2, 5), (1, 5), (1, 7)	2	SC1 for translation $\begin{pmatrix} -4\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ 4 \end{pmatrix}$ or 3 correct vertices plotted but not joined
	(ii)	Image at $(2, -3)$, $(5, -3)$, $(5, -5)$	2	SC1 for a reflection in a horizontal line or in the line $x = -1$ or 3 correct vertices plotted but not joined
	(b) (i)	Rotation 180 oe	1	Alt Enlargement SF – 1 (– 1, 0)
		(-1,0)	1	Not as column vector
	(ii)	Reflection	1	
		y = -x oe	1	
	(iii)	Stretch x-axis oe invariant [factor] 3	1 1 1	

```
Page 3
```

Mark Scheme Cambridge IGCSE – October/November 2015

SyllabusPaper044443

Q	uestion	Answer	Mark	Part marks
3	(a)	43 200	3	M2 for $0.5 \times (35 + 25) \times 12 \times 120$ oe or M1 for $0.5 \times (35 + 25) \times 12$ oe
	(b) (i)	0.5 × (25 + 30) × 6 ×120 [= 19800]	M2	Dep on a valid method for obtaining the width of 30 cm B1 for $0.5 \times (25 + 35)$ oe
	(ii)	45.8 or 45.83	1FT	FT for $\frac{19800}{their(\mathbf{a})} \times 100$
	(c)	1 h 39 min	4	B3 for 1.65 [h] or 99 mins or $\frac{33}{20}$
				or M2 for $\frac{19800}{12 \times 1000}$ oe
				or M1 for $\frac{19800}{12}$ or $\frac{19800}{1000}$ or 12×1000
				If zero scored then SC1 for figs 165 and B1 for converting their time (in hours) into hours and minutes
	(d)	12.8 or 12.80 to 12.81	3	M2 for $\sqrt[3]{\frac{19800}{3\pi}}$ or M1 for $\pi r^2 3r = 19800$
	(e)	21[.0]	2	M1 for $\pi r \ 3r = 19800$ M1 for $\frac{19800}{1000} + 1.2$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0444	43

Q	uesti	on	Answer	Mark	Part marks
4	(a)		-1.5, 0.5	2	B1, B1
	(b)		Correct curve	5	 B3 FT for 10 or 11 points or B2FT for 8 or 9 points or B1FT for 6 or 7 points and B1 independent for two branches SC4 for correct curve but branches joined
	(c)		1.25 to 1.35	1	
	(d)		-1	1	
	(e)	(i)	2-x	1	
		(ii)	Ruled line with gradient -1 through (0, 2) and fit for purpose	2FT	SC1 for ruled line, with gradient –1 or through (0, 2), but not $y = 2$ FT <i>their</i> $y = mx + c$ from (e)(i), if $m \neq 0$ SC1FT for ruled line either with correct gradient or through (0, c) but not $y = c$
			1.15 to 1.25 cao	1	or anough (0, c) out not y c

```
Page 5
```

Mark Scheme Cambridge IGCSE – October/November 2015

Q	uestio	n	Answer	Mark	Part marks
5	(a)		2180 or 2181 nfww	4	M2 for $680^2 + 2380^2 - 2 \times 680 \times 2380 \cos 65$ oe or M1 for correct implicit cosine formula A1 for 4760000 or 4758000 to 4759000
	(b)		78.7 or 78.71	3	M2 for $\frac{2380 \sin 40}{1560}$ or M1 for $\frac{1560}{\sin 40} = \frac{2380}{\sin M}$ oe
	(c)		309 or 308.7	2FT	FT 230 + <i>their</i> (b)
					B1FT 50 + <i>their</i> (b) for 129 or 128.7 [i.e. for <i>C</i> from <i>M</i>]
	(d)	(i)	2339 oe	1	
		(ii)	650	2	M1 for 1560 ÷ journey time
6	(a)		101.5625 or 102 or 101.5 to 101.6 nfww	4	M1 for 55, 90, 110, 160 soi M1 for Σfm with frequencies and each <i>m</i> in or on a boundary of a correct interval 2750, 2700, 4400, 6400 M1 dep on 2nd M for \div 160
	(b)		Correct histogram drawn with correct widths and heights 1, 1.5 and 2 (no gaps)	3	B1 for each correct block If zero scored, SC1 for correct heights or frequency densities
	(c)		$\frac{40}{160}$ oe	1	
	(d)	(i)	$\frac{1560}{25440}$ oe	2	M1 for $\frac{40}{160} \times \frac{39}{159}$
		(ii)	<u>4000</u> oe	3	M2 for $\frac{40}{160} \times \frac{50}{159} + \frac{50}{160} \times \frac{40}{159}$ oe or M1 for one of these products soi

```
Page 6
```

Mark Scheme Cambridge IGCSE – October/November 2015

SyllabusPaper044443

Question	Answer	Mark	Part marks
7 (a)	83 nfww	4	B3 for $17x = 1411$ or $17x = 14.11$ oe in form ax = b or final answer of 0.83 or B2 for $6x + 11x - 55 = 1356$ oe or $6x + 11x - [0.]$ 55 = 13[.]56 or M1 for $6x + 11(x - [0.0]5) = 13[.]56$
(b)	$\frac{1}{3}$ oe nfww	4	M1 for $y(y+3)$ oe or $\frac{1}{2}(2y+1)(y+1)$ oe and B2 for $2y^2 + 6y = 2y^2 + 2y + y + 1$ oe or better or B1 for $(2y+1)(y+1) = 2y^2 + 2y + y + 1$ soi
(c)	25 nfww	4	M1 for $\frac{4[.]80}{w-1}$ or $\frac{7[.]80}{2w-11}$ M1 for $\frac{4[.]80}{w-1} = \frac{7[.]80}{2w-11}$ oe M1 for $480(2w-11) = 780(w-1)$ oe or ALT M1 for $n(w-1) = 4[.]80$ or $n(2w-11) = 7[.]80$ M1 for $2wn - 11n = 7[.]80$ 2wn - 2n = 9[.]60 oe M1 for $9n = 180$ oe or better ALT M1 for $n(w-1) = 4[.]80$ or $n(2w-11) = 7[.]80$ M1 for $n(w-1) = 4[.]80$ or $n(2w-11) = 7[.]80$ M1 for $\frac{4[.]80+n}{n} = \frac{7[.]80+11n}{2n}$ M1 for $9n = 180$ oe or better
(d) (i)	$\frac{1}{2}u(3u-2) = 2.5$ One further correct step leading to $3u^2 - 2u - 5 = 0$ with no errors	M1 A1	First step must involve $\frac{1}{2}u(3u-2)$
(ii)	(3u-5)(u+1)	2	SC1 for $(3u + a)(u + b)$ where $ab = -5$ or $a + 3b = -2$ [<i>a</i> , <i>b</i> integers]
(iii)	29.1 or 29.05	3	M2 for $\tan = \frac{their \frac{5}{3}}{3 \times their \frac{5}{3} - 2}$ or M1 for substituting <i>their</i> positive value of <i>u</i> into [<i>u</i> and] $3u - 2$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0444	43

Q	uesti	on	Answer	Mark	Part marks
8	(a)	(i)	Angle A is common to both triangles oe ADB = ABC Third angle of triangles equal oe	1 1dep	Accept $DAB = CAB$ oe Dep on previous mark
		(ii)	Similar	1	
		(iii)	8.25	2	M1 for $\frac{16}{12} = \frac{11}{BD}$ oe or better
	(b)	(i)	75	1	
		(ii)	70	2	B1 for OAB or $OBA = 20$
	(c)		36 nfww	5	B4 for an equation in <i>m</i> that simplifies to 5m = 180 or B1 for each of 3 of the listed angles expressed in terms of <i>m</i> , in its simplest form, stated or labelled on diagram Angle $PQO = m$ Angle $QOR = m$ Angle $OQR = 2m$ Angle $PQR = 3m$ or $180 - 2m$ or $90 + \frac{m}{2}$ Angle $POR = 180 - m$ or $4m$ or $360 - 6m$ Reflex angle $POR = 360 - 4m$ or $6m$ or $180 + m$
9	(a)		8	1	
	(b)		3	2	B1 for $[g(0.5) =]2$ soi or M1 for $2\left(\frac{1}{x}\right) - 1$ or better
	(c)		$\frac{x+1}{2}$ final answer	2	M1 for $x = 2y - 1$ or $y + 1 = 2x$ or better or $\frac{y}{2} = x - \frac{1}{2}$
	(d)		4x - 3	2	M1 for $2(2x - 1) - 1$
	(e)		$4x^2 - 4x + 7$	2	B1 for $\left[\left(2x - 1 \right)^2 \right] = 4x^2 - 2x - 2x + 1$
	(f)		x	1	
	(g)		$g^{-1}(x) = g(x)$	1	
	(h)		fh(x)	1	

Page 8		Mark S	Syllabus	Paper		
		Cambridge IGCSE – C	0444	43		
Question	estion Answer Mark Part marks					
10	Α	-13, -20	1			
		-7n + 22 oe	2	SC1 for $-7n + k$ or $kn + 22$	oe	
	В	$\frac{9}{22}, \frac{10}{23}$	1			
		$\frac{n+4}{n+17}$ oe	2	B1 for $n + 4$ oe or $n + 17$ wrong position	oe seen, but	not in
	С	26, 37	1			
		$n^2 + 1$ oe	1			
	D	162, 486	1			
		$2 \times 3^{n-1}$ oe	2	SC1 for $k \times 3^{n+p}$ [k, p integration of the second s	gers]	
				Accept 2 × $\frac{3^n}{3}$		