

READ THESE INSTRUCTIONS FIRST

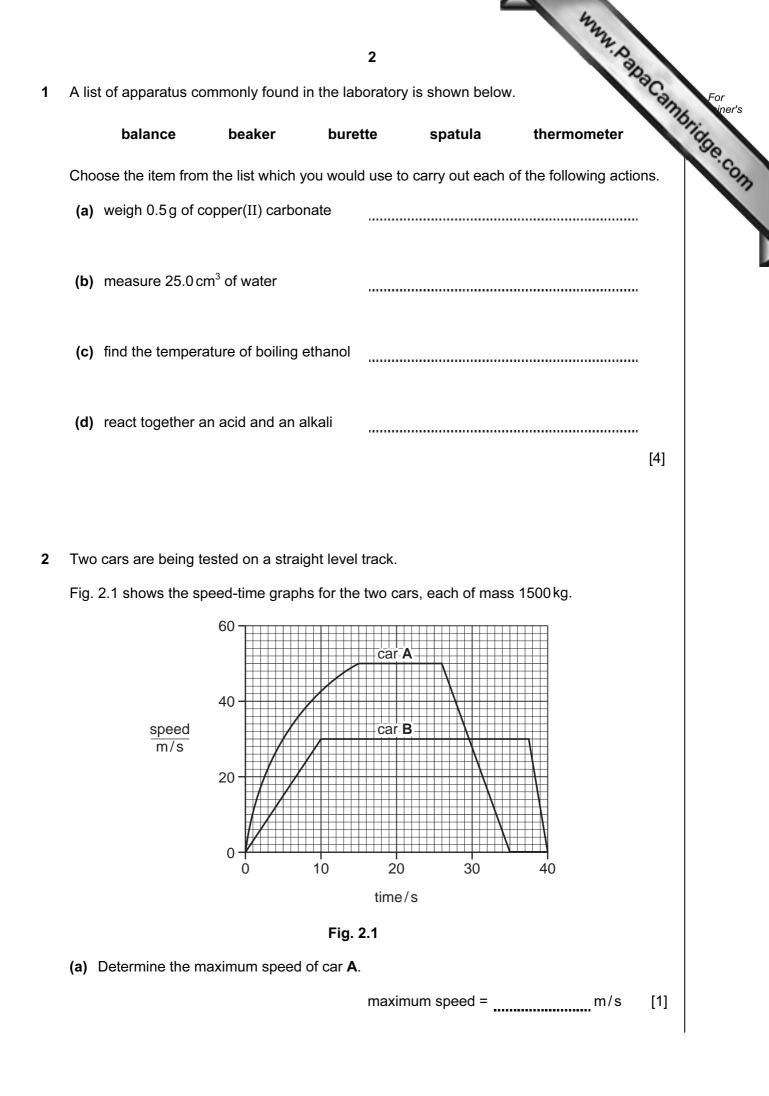
Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.


Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
Total	

This document consists of 16 printed pages.

(b)	3 Describe the motion of car B during the last 2.5 s of the test.	Camp For iner's
(c)	Use the graph to determine the distance travelled by car B during the first 10 s of t test.	
(d)	distance = m From 10.0 s to 37.5 s car B is travelling at constant speed in a straight line. (i) State the resultant force on the car during this time.	[2]
	force =(ii) Explain why the car engine must continue to do work during this period.	[1]
(e)	At the beginning of the test both cars accelerate from rest. Explain which car produces the greater accelerating force.	

		4	
3	(a)	Give an example of an ionic compound and an example of a covalent compound	For
		ionic compound	high
		covalent compound [2]	Se.con
	(b)	Describe two differences in the properties of ionic and covalent compounds.	
		2	
		[2]	

(c) Draw a dot and cross diagram to show the electron arrangement in an atom of magnesium.

[2]

4	(a)	5 Name the main ore of aluminium.	For iner's
	(b)	Explain why aluminium is not extracted from its ore by heating with carbon.	SSE.COM
		[2]	

www.papaCambridge.com A student is investigating the melting of fruit flavoured crushed ice. Initially, the temp 5 of the ice is -10 °C. He measures the temperature every 30 s.

Fig. 5.1 shows the apparatus he uses.

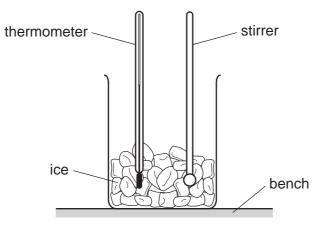
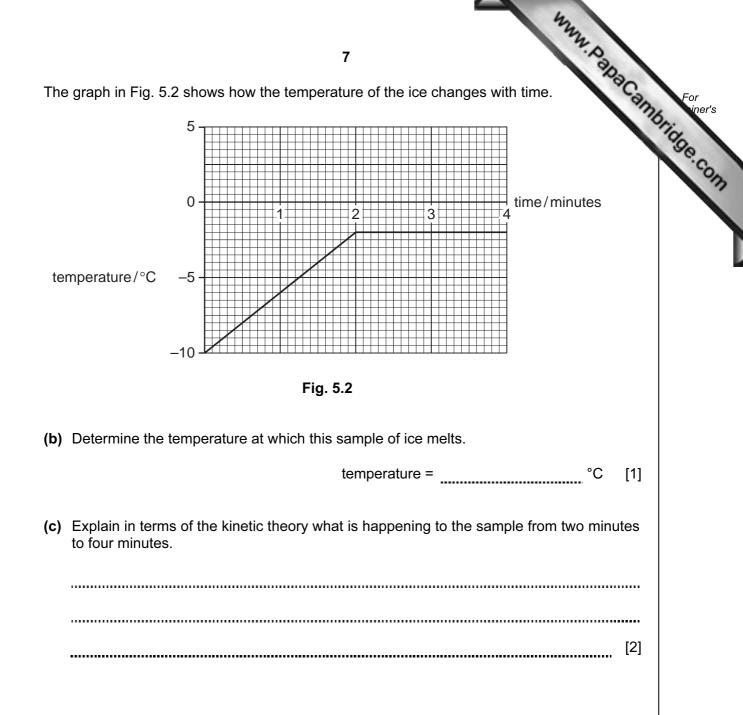



Fig. 5.1

(a) (i) Explain why the student stirs the crushed ice just before taking each temperature reading.

......[1] (ii) Suggest why, in the first two minutes of the experiment, the temperature of the ice rises, even though there is no apparent heat source. [2]

- (a) Complete Table 6.1 by putting in the missing names, formulae and molar masses 6
 - Table 6.1

Complete Table 6.1 by putt	8 ing in the missing names, forr Table 6.1	mulae and molar masses	For iner's
name	formula	mass of 1 mole/g	S.C.O.
	H₂O		
hydrogen chloride		36.5	
sodium fluoride		42	
	N ₂		

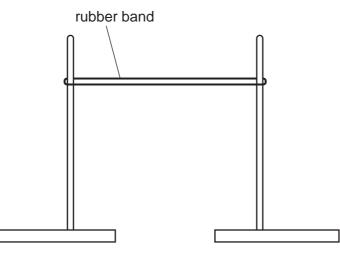
[4]

(b) Give the symbols for the ions in sodium fluoride and the number of protons present in each ion.

sodium ion	 number of protons	
fluoride ion	 number of protons	 [2]

The radioactive isotope $^{105}_{\ 45} Rh$ decays by emitting a beta-particle (β-particle). 7

(a) (i) State the number of protons in the nucleus of this isotope.


number of protons = [1]

(ii) Calculate the number of neutrons in the nucleus.

number of neutrons = [1]

			9	
	(b)	(i)	9 What is a beta-particle?	Cannbri For
				[1]
		(ii)	Describe the changes in the nucleus when a beta-particle is emitted.	
				[2]
8	(a)		e an advantage and a disadvantage of using hydrogen as a fuel for motor vehicle	es.
			antage	
		disa	advantage	[2]
	(b)	Wri	e a balanced equation for the burning of hydrogen in air.	
				[2]
	(c)	Des	cribe a test for hydrogen and state the expected result.	
		test		
		resi	ılt	[2]
	(d)	The	reaction between hydrogen and nitrogen is an important industrial process.	
		(i)	Name the gas formed.	
				[1]
		(ii)	Name this industrial process.	
				[1]

www.papaCambridge.com A student experiments with a rubber band. She stretches it between two retort stan notices that it produces a sound when she plucks it. The apparatus is shown in Fig. 9.1. 9

(a) Explain why the sound is produced.

..... [2] _____

(b) The student sets up a cathode ray oscilloscope and a microphone as shown in Fig. 9.2 to display the sound trace produced by the apparatus in Fig. 9.1.

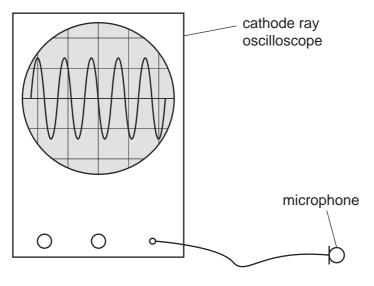


Fig. 9.2

www.papacambridge.com (i) She now plucks the rubber band so that a quieter note of the same freque heard.

Draw, on Fig. 9.3, the trace that is now seen.

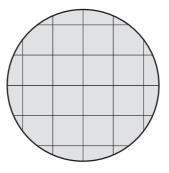
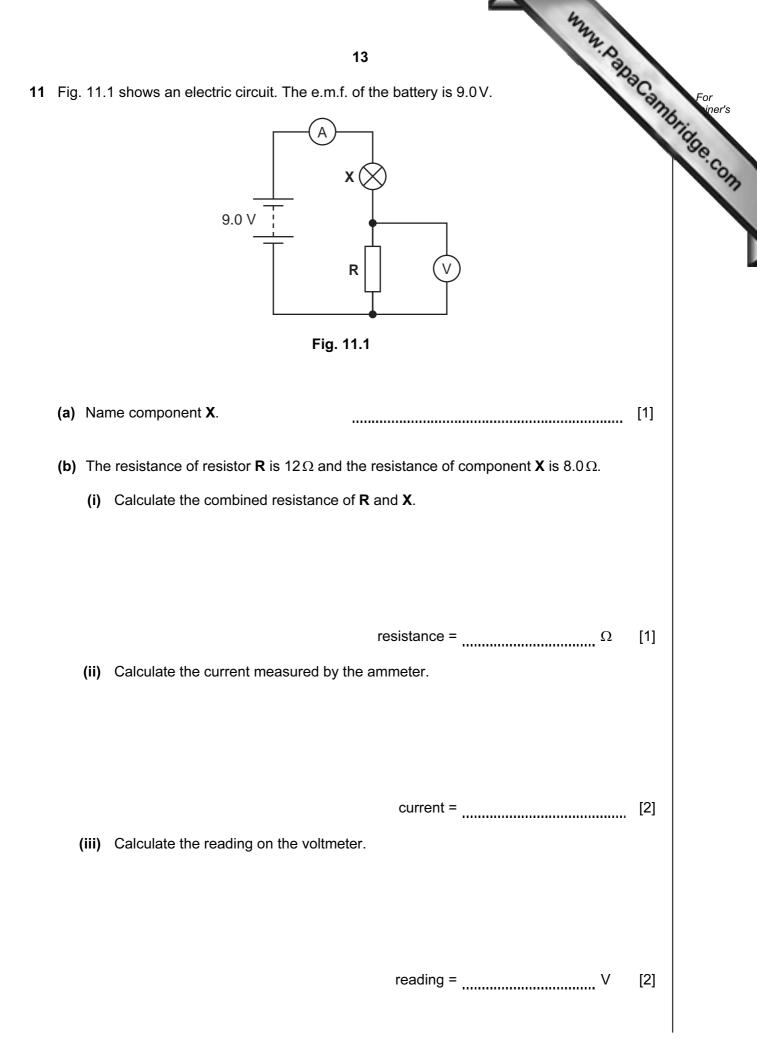
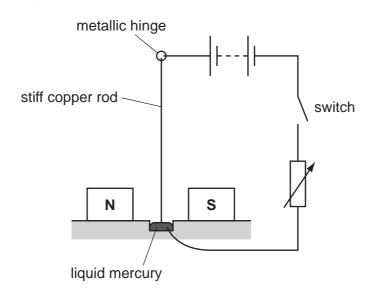


Fig. 9.3


(ii) She moves the stands further apart. She plucks the band again. The frequency of the sound now heard is greater than before.

Explain what is meant by the term *frequency* and state the unit used to measure it.

[2]


unit	[]	2]

		Mary .	Cannu For iner's [1]
		12	
10	Chl	orine is in Group VII of the Periodic Table.	Can For
	(a)	Name this Group.	TOTICE NOTS
			[1] Se.co
	(b)	Name another element in this Group.	12
	(~)		[1]
	(c)	State one use of chlorine.	
			[1]
	(d)	Name the Group II element which is in the same period as chlorine.	
			[1]
	(e)	Describe how, using chlorine, you can show that a solution contains bromide ions.	
			[2]
	(f)	Write down the number of electrons in a bromine atom and in a bromide ion.	
		bromine atom	
		bromide ion	[2]

		14 4444 D	acampringe. [1]
12	2 Methane and ethane are hydrocarbons. series.	They are members of the same homo	PC annu For
	(a) Name this homologous series.		[1]
	(b) Give the name and formula of the next		
	name		
	formula		[2]
	(c) Explain why ethanol, C_2H_5OH , is not a	hydrocarbon.	
			[2]

www.papacambridge.com 13 (a) Fig. 13.1 shows a stiff copper rod suspended between two magnetic poles. The rod is freely hinged at the top.

Fig. 13.1

(a)	Draw, on Fig. 13.1, the magnetic field between the poles. [3]
(b)	Explain why a current passes through the circuit when the switch is closed.
	[2]
(c)	State what will be observed when switch is closed.
	[2]
(d)	The connections to the battery are reversed so that the current in the circuit is in the opposite direction.
	State how the observations change.
	[1]

c	Þ	He ⁴	Helium 2	20	Ne	Neon 10	40	Argon	84	Kr typton	16	¹³¹ Xenon Xenon	54	Radon B6			175	Lu Lutetium 71		Lawrencium 103	Papa Cal.
	II>			19	ш	Fluorine 9	35.5	Chlorine 17	80	Bromine Bromine	35	127 I	53	At Astatine 85			173	Yb Ytterbium 70	:	Nobelium 102	
	N			16	0	Oxygen 8	32 V		62	Selenium	34	128 Te Tellurium	52	PO Polonium 84			169	Thulium 69		Md Mendelevium 101	
	>			14	z	Nitrogen 7	۵ ع	Phosphorus 15	75		33	122 Sb ^{Antimony}	51	209 Bismuth 83			167	Erbium 68		Fermium 100	
	\geq			12	ပ	Carbon 6	U 28	Silicon 14	73	Germanium Germanium	32	119 Sn	50	207 Pb ^{Lead}			165	Holmium 67		Ensteinium 99	(r.t.p.).
	≡			1	В	5 5	27 A 1	Aluminium 13	70	Gallium Gallium	31	115 In Indium	49	204 T 1 Thallium 81			162	Dy Dysprosium 66		Californium 08	pressure
			,						65	Zinc Zinc	30	112 Cadmium	48	201 Hg ^{Mercury}			159	Tb Terbium 65	1	BK Berkelium 97	ature and
									64	Copper Copper	29	Ag Silver	47	197 Au Gold 79			157	Gd Gadolinium 64		66 Curium	n tempera
Group									20	Nickel	28	106 Palladium	46	195 Pt Platinum 78			152	Europium 63		Am Americium 95	n³ at roor
Gre									20	Cobalt Cobalt	27	103 Rhodium	45	192 Ir Iridium 77			150	Samarium 62		Plutonium 94	ls is 24 dr
	-	- I	Hydrogen 1						56	Ee E	26	101 Ruthenium	44	190 OS Osmium 76	-			Promethium 61	:	Neptunium 93	of any ge
									55	Manganese	25	Tc Technetium	4	186 Re Rhenium 75			144	Ę	238	c	one mole
									25	Chromium	24	96 Molybdenum	42	184 V Tungsten 74	-		141	Praseodymium 59		Pa Protactinium 91	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).
									51	Vanadium	23	93 Niobium	41	181 Ta Tantalum 73	-		140	Cerium 58	232	Thorium 90	The v
									48		5	91 Zrconium	40	178 Hafnium 72			-		mic mass	nic) number	
			I	[1		45	Scandium	21	Xttrium	39	139 La Lanthanum 57 *	227	AC Actinium Ro		a series series	a = relative atomic mass	<pre>X = atomic symbol b = proton (atomic) number</pre>	
	=			6	Be	Beryllium 4	24 MC	Magnesium 12	40	Calcium Calcium	20	Strontium Strontium	38	137 Barium 56	226	Radium 88		58-71 Lantnanoid series 190-103 Actinoid series	o a		
	_			7	:	Lithium 3	23 Ng	Sodium 11	30		19	85 Rubidium	37	133 CS Caesium 55	Ĺ	Francium 87		58-71 L †90-103	:	ه ۲ey	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of