Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SCIENCE

Paper 2 (Core)

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
A copy of the Periodic Table is printed on page 20.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

1 (a) The pie chart in Fig. 1.1 shows the energy sources used to generate the electricity in a European country in one year.

nuclear	25%
coal	25%
natural gas	40%
hydroelectric	3%
oil	3%
other fuels	2%
other energy sources	2%

Fig. 1.1
(i) Suggest one fuel which could have been included in the 'other fuels' section.
\qquad
(ii) Calculate the percentage of the country's electricity that comes from fossil fuels listed in Fig. 1.1.
\qquad
(iii) Hydroelectricity is a renewable energy resource. Name two other renewable energy resources.
1.
2.
(b) Generators are required in order to produce electricity in a power station. Complete the diagram below to show the processes involved.

(c) Transformers are used to increase the voltage before electricity is transmitted.

Explain why this is done.
\qquad

2 A student uses the apparatus shown in Fig. 2.1 to investigate several different chemical reactions. In each reaction, a solid reacts with hydrochloric acid and a gas is produced. The volume of gas produced in each case can be measured using the gas syringe.

Fig. 2.1
(a) (i) Table 2.1 lists three experiments in which three different solids react with hydrochloric acid.

Complete Table 2.1 by writing in the right hand column the name of the gas produced.

Table 2.1

experiment number	solid reacted	gas produced
$\mathbf{1}$	calcium carbonate	
$\mathbf{2}$	magnesium	
$\mathbf{3}$	sodium hydrogencarbonate	

(ii) Write the chemical formula of hydrochloric acid.
\qquad
(iii) Choose one of the gases you have named in Table 2.1 and describe the test for this gas.
\qquad
\qquad
\qquad
(b) How would the student use the apparatus shown in Fig. 2.1 to find out whether a reaction was exothermic?
\qquad
(c) The student finds that the rate of reaction is greatest for experiment 3.
(i) Suggest the measurements which the student took in order to find the rate of reaction in each experiment.
\qquad
\qquad
\qquad
(ii) Suggest one way in which the student could change the conditions of experiment 3 in order to reduce the rate of reaction.
\qquad
\qquad

3 Fig 3.1 shows a human fetus just before birth.

Fig. 3.1
(a) Name structures \mathbf{A} to \mathbf{C}, using some of these words.
amniotic fluid artery
cervix
oviduct
umbilical cord
zygote

A \qquad
B

C
(b) Explain how the developing fetus obtains nutrients while it is in the uterus.
\qquad
\qquad
\qquad
\qquad
(c) Outline what happens during the birth of the baby.
\qquad
\qquad
\qquad
\qquad
(d) If a mother has AIDS, there is a risk that her baby may be born with HIV and develop AIDS.

Explain how this could happen.
\qquad
\qquad

4 (a) Fig. 4.1 shows a ray of light passing from air into a glass block.

Fig. 4.1
(i) On Fig. 4.1, draw two straight lines to show what happens to the ray of light as it passes through the block and out into the air.
(ii) On Fig. 4.1, indicate the angle of refraction as the ray enters the block.
(b) A student carried out an experiment to find the speed of sound in air by watching and listening to a bell being rung.
He stood with a timer 1000 m from the bell.

The sound took 3 seconds to travel from the bell to the student.
Calculate the speed of sound.
Show your working and state the formula that you use.
formula used
working
m / s
[2]

5 Fig. 5.1 shows industrial apparatus used to obtain useful products, \mathbf{A} to \mathbf{F}, from petroleum (crude oil).

Fig. 5.1
(a) (i) Name the process shown in Fig. 5.1.
\qquad
(ii) State which of the products, \mathbf{A} to \mathbf{F}, is at the highest temperature when it first comes out of the apparatus in Fig. 5.1.
\qquad
(b) Product B in Fig. 5.1 is used as fuel for cars.
(i) Name the element which reacts with molecules of product \mathbf{B} in car engines.
\qquad
(ii) Describe and explain one way in which the use of product \mathbf{B} as car fuel could be affecting our environment.
\qquad
\qquad
\qquad
\qquad
(c) Plastics contain molecules called polymers.

Describe how a typical polymer molecule such as poly(ethene) is different from a simple molecule such as ethene.
\qquad
\qquad

6 An athlete ran on a treadmill on three different days. He ran a different distance on each day.

The volume of oxygen that he used was measured during each run. The results are shown in Table 6.1.

Table 6.1

length of run /m	total oxygen used $/ \mathrm{dm}^{3}$
100	10
1500	36
10000	150

(a) (i) Calculate the oxygen used per metre in the 100 metre run.

$$
\begin{equation*}
\mathrm{dm}^{3} \tag{1}
\end{equation*}
$$

(ii) Describe the relationship shown in Table 6.1 between the oxygen used and the length of the run.
\qquad
\qquad
(b) (i) Describe how the oxygen breathed in by the athlete was transported to his muscles.
\qquad
\qquad
\qquad
(ii) Explain how the oxygen taken in by the athlete was used to provide the energy that he used in the runs.
\qquad
\qquad
\qquad
\qquad
(c) Professional athletes never drink alcohol before a race. Suggest how drinking even a small amount of alcohol could increase an athlete's time in a 100 m race.
\qquad
\qquad

7 (a) A torch contains 3 cells, a switch and a lamp connected in series.
(i) Draw a circuit diagram for this circuit using the correct symbols.
(ii) The potential difference across each of the cells in the circuit is 1.5 V .

State the total potential difference across the three cells.
\qquad
(b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum.
(i) State a source, a detector and a use of infra-red radiation.
source
\qquad
detector
\qquad
use
(ii) Name one other region of the electromagnetic spectrum.
\qquad

8 (a) Table 8.1 shows some properties of elements.
Write the letter \mathbf{M} in the right hand column next to properties which are typical of metallic elements.

Table 8.1

can be hammered into different shapes	
poor conductor of heat	
is a gas at room temperature $\left(20^{\circ} \mathrm{C}\right)$	
good conductor of electricity	
poor conductor of electricity	

(b) Aluminium is an important metal in Group III of the Periodic Table.
(i) State the chemical symbol for aluminium.
(ii) State the number of protons in one atom of aluminium.
\qquad
(iii) Why is aluminium a suitable material for making containers used to store food?
\qquad
\qquad
(c) Aluminium is obtained from the compound aluminium oxide.

Explain why aluminium oxide is called a compound and not an element.
\qquad
\qquad
(d) Electrolysis is used to extract aluminium from aluminium oxide, an ionic compound which is insoluble in water.
(i) How can aluminium oxide be made into an electrolyte?
(ii) Complete the word equation below to show the chemical change that occurs when aluminium oxide undergoes electrolysis.

$$
\begin{equation*}
. \rightarrow \text { aluminium }{ }^{+} . \tag{1}
\end{equation*}
$$

9 Fig. 9.1 shows a root hair cell.

Fig. 9.1
(a) State two ways in which the structure of this cell differs from a palisade cell in a leaf.

1. \qquad
\qquad
2. \qquad
(b) The function of a root hair is to take up water from the soil. The arrows in Fig. 9.1 show water entering the root hair cell.
(i) How many membranes does the water pass through between the soil and the vacuole of the root hair cell?
(ii) Describe the pathway taken by the water as it travels from the root hair and into the leaves of the plant.
\qquad
\qquad
\qquad
(iii) Some of the water is used in photosynthesis in the leaves of the plant.

Write the word equation for photosynthesis.
\qquad
(iv) On a hot, sunny day much more water goes into the root hair cell than on a cold, dull day. Suggest an explanation for this.
\qquad
\qquad
\qquad

10 (a) Explain why it could be dangerous to switch on a mains electrical appliance using wet hands.
\qquad
\qquad
(b) Explain why a source of alpha radiation is more dangerous if it gets inside the human body than outside the body.
\qquad
\qquad
\qquad
(c) Explain why small expansion gaps are left between sections of road bridges.
\qquad
\qquad

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.). Group

