Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SCIENCE

Paper 3 (Extended)

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
A copy of the Periodic Table is printed on page 20.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

1 (a) The pie chart in Fig. 1.1 shows the energy sources used to generate the electricity in a European country in one year.

nuclear	25%
coal	25%
natural gas	40%
hydroelectric	3%
oil	3%
other fuels	2%
other energy sources	2%

Fig. 1.1
(i) Suggest one fuel which could have been included in the 'other fuels' section.
\qquad
(ii) Calculate the percentage of the country's electricity derived from fossil fuels listed in Fig. 1.1.
\qquad
(b) (i) Transformers are used to increase the voltage before electricity is transmitted.

Explain why this is done
\qquad
\qquad
(ii) Explain why the electricity generated in power stations is normally a.c. and not d.c.
\qquad
\qquad
\qquad
(iii) On the grid below sketch a graph to show how the voltage output from an a.c. generator varies with time.

2 Fig. 2.1 shows a human fetus just before birth.

Fig. 2.1
(a) Name structures \mathbf{A} to \mathbf{D}.
A
B \qquad
C
D
(b) Explain how the developing fetus obtains nutrients while it is in the uterus.
\qquad
\qquad
\qquad
\qquad
(c) After birth, the baby can be breast fed on milk from its mother, or bottle fed on milk made up from a formula.

Describe two advantages, apart from cost, of breast feeding a baby.
\qquad
\qquad
\qquad
\qquad
(d) If a mother has AIDS, there is a risk that her baby may be born with HIV and develop AIDS.

Explain how this could happen.
\qquad
\qquad
\qquad
\qquad

3 A student uses the apparatus shown in Fig. 3.1 to investigate several different chemical reactions. In each reaction, a solid reacts with a solution and a gas is produced. The volume of gas produced in each case can be measured using the gas syringe.

Fig. 3.1
(a) (i) Table 3.1 lists three experiments in which three different solids react with three different solutions.

Complete Table 3.1 by writing in the right hand column the name of the gas \mathbf{C} produced in each experiment.

Table 3.1

experiment number	solution \mathbf{A}	pH of solution \mathbf{A}	solid \mathbf{B}	gas \mathbf{C}
$\mathbf{1}$	hydrochloric acid	1.2	calcium carbonate	
$\mathbf{2}$	sulphuric acid	1.5	magnesium	
$\mathbf{3}$	nitric acid	1.1	sodium hydrogencarbonate	

(ii) Write the chemical formula of nitric acid.
\qquad
(iii) All aqueous solutions of acids contain hydrogen ions, H^{+}.

State which acid in Table 3.1 contains the highest concentration of hydrogen ions.
(b) The student then carried out a series of experiments using calcium carbonate and dilute hydrochloric acid. She measured the time taken for $50 \mathrm{~cm}^{3}$ of gas to collect in the gas syringe shown in Fig. 3.1.

Her results are shown in Table 3.2.
Table 3.2

experiment number	time to collect $50 \mathrm{~cm}^{3}$ of gas/s
$\mathbf{4}$	40
$\mathbf{5}$	80
$\mathbf{6}$	20

(i) Explain in which reaction, 4,5 or 6, the rate of reaction was the greatest.
\qquad
\qquad
(ii) Suggest and explain, in terms of collisions between particles, one possible difference in the reaction conditions between experiments 5 and 6 which would explain the difference in reaction rate.
\qquad
\qquad
\qquad
\qquad
\qquad

4 A torch contains 3 cells, a switch and a lamp connected in series.
(a) The potential difference across each of the cells in the circuit is 1.5 V .
(i) State the total potential difference across the three cells.
(ii) State the potential difference across the lamp.
\qquad
(b) Fig. 4.1 shows a torch standing on a table. \mathbf{M} is the position of the centre of mass of the torch.

Fig. 4.1
(i) What is meant by the term centre of mass?
\qquad
\qquad
(ii) Explain why the torch is more stable if it stands on end \mathbf{A} rather than on end \mathbf{B}. Use diagrams in your answer.
\qquad

5 An athlete ran on a treadmill on three different days. He ran a different distance on each day. Each time, he ran at a speed that he would use if he was running a race of that particular distance.

The amount of energy that he used and the volume of oxygen that he consumed was measured during each run. The results are shown in Table 5.1.

Table 5.1

distance of run $/ \mathrm{m}$	total oxygen consumed $/ \mathrm{dm}^{3}$	total energy used $/ \mathrm{kJ}$	mean energy use per metre $/ \mathrm{kJ}$
100	10	200	2.0
1500	36	720	0.5
10000	150	3000	

(a) (i) Explain how the oxygen consumed by the athlete was used to provide the energy that he used in the runs.
\qquad
\qquad
\qquad
\qquad
(ii) The amount of energy provided by one dm^{3} of oxygen was the same in each run. Calculate this value.
(b) (i) Calculate the energy used per metre in the 10000 metre run, and write the answer in Table 5.1.
(ii) Describe the relationship shown in the table between the mean energy used per metre and the distance of the run. Suggest a reason for this relationship.
\qquad
\qquad
(c) At the end of the 100 m run, the athlete carried on breathing very heavily for the next few minutes.
Explain why he did this.
\qquad
\qquad
\qquad

6 Fig. 6.1 shows industrial apparatus used to obtain useful products, \mathbf{A} to \mathbf{F}, from petroleum (crude oil).

Fig. 6.1
(a) (i) Name the process shown in Fig. 6.1.
\qquad
(ii) State which of the products, \mathbf{A} to \mathbf{F}, is at the highest temperature when it first comes out of the apparatus in Fig. 6.1.
\qquad
(b) The balanced equation for the complete combustion of methane is shown below.

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(i) Calculate the relative molecular mass of water. The relative atomic masses of hydrogen and oxygen are 1 and 16 respectively. Show your working.
(ii) When 16 g of methane burn, 44 g of carbon dioxide and 36 g of water are formed.

Calculate the total mass of products when 32000 g of methane burn. Show your working.
(c) During the complete combustion of 16 g of methane, some chemical bonds are broken and others are formed. Table 6.2 shows some information about the energy changes involved in this reaction.

Table 6.2

energy absorbed when chemical bonds are broken	energy released when chemical bonds are formed
2632 J	3446 J

(i) Name one substance in which bonds are broken during the complete combustion of methane.
\qquad
(ii) Use the information in Table 6.2 to explain why the complete combustion of
\qquad
\qquad
(d) The displayed formula of ethene is shown below.

Describe what happens when ethene undergoes addition polymerisation to form poly(ethene). You may draw a diagram if it helps you to answer this question.

Abstract

methane is an exothermic reaction.

\qquad
\qquad

7 (a) Optical fibres are used to view cavities inside the body. Light is sent down some of the fibres to enable doctors to see what is there.
(i) Fig. 7.1 shows an optical fibre with a ray of light travelling down part of it. Draw the path of the ray of light as it travels down the fibre.

Fig. 7.1
(ii) Some fibres are used to allow the light to return so that an image can be seen.

Why is it important that light does not leak from one fibre to another?
\qquad
\qquad
(iii) Suggest why optical fibres are now replacing metal wires as the method by which telephone signals are sent.
\qquad
(b) A student carried out an experiment to find the speed of sound in air by watching and listening to a bell being rung.
He stood with a timer 1000 m from the bell.
(i) The sound took 3 seconds to travel from the bell to the student.

Calculate the speed of sound.
Show your working and state the formula that you use.
formula used
working
(ii) Describe how the density of an irregular object such as a bell could be determined.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8 A gardener found that aphids (greenfly) were feeding on his rose plants.
Fig. 8.1 shows an aphid on a rose stem.

Fig. 8.1

Aphids feed by using their needle-like mouthparts to pierce the plant stems and leaves. They suck out fluid from the plant's phloem tubes.
(a) (i) Explain why even a small insect such as an aphid can reach the fluid in the phloem tubes.
\qquad
\qquad
(ii) Explain why the contents of the phloem tubes make a better food source for insects than the contents of the xylem vessels.
\qquad
\qquad
\qquad
\qquad
(b) The gardener decided to spray the plants with a systemic insecticide. An insecticide is a pesticide that kills insects. Systemic pesticides are taken into the plant through its leaves and then transported throughout the plant.
(i) Give two advantages of systemic pesticides over other kinds of pesticides.
\qquad
\qquad
\qquad
\qquad
(ii) An alternative method of controlling aphids on rose bushes is to introduce a population of ladybirds to the plants. Ladybirds kill and eat aphids.

Give the name for this kind of pest control.
(c) Phloem is a tissue. Explain what is meant by this term.
\qquad
\qquad
\qquad

9 (a) Table 9.1 shows some properties of elements.
Write the letter \mathbf{M} in the right hand column next to properties which are typical of metallic elements.

Table 9.1

can be hammered into different shapes	
poor conductor of heat	
is a gas at room temperature $\left(20^{\circ} \mathrm{C}\right)$	
good conductor of electricity	
poor conductor of electricity	

(b) Aluminium is an important metal in Group III of the Periodic Table.

State the number of protons in one atom of aluminium.
(c) Aluminium is obtained from the compound aluminium oxide by electrolysis.
(i) Fig. 9.2 shows diagrams of an aluminium atom and an oxygen atom.

Complete the diagrams of the aluminium ion and the oxide ion. Include the electrical charges of the ions.

Fig. 9.2
(ii) Describe what happens to each aluminium ion on the surface of the cathode during electrolysis.
\qquad
\qquad
\qquad
(iii) The symbolic equation below shows the overall chemical change during the electrolysis of aluminium oxide.

Complete the balancing of the equation.

$$
\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+\mathrm{O}_{2}
$$

10 (a) Explain in terms of particles why, when a gas is compressed, the pressure exerted by the gas on the container increases as its volume decreases.
\qquad
\qquad
\qquad
\qquad
(b) Explain the difference between speed and velocity.
\qquad
(c) Explain why a source of alpha radiation is more dangerous if it gets inside the human body than outside the body.
\qquad
\qquad
\qquad

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.). Group

