CANDIDATE NAME

COMBINED SCIENCE

0653/03
Paper 3 (Extended)
October/November 2007
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
A copy of the Periodic Table is printed on page 24.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of $\mathbf{2 1}$ printed pages and $\mathbf{3}$ blank pages.

1 Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, is a colourless liquid.
Hydrogen peroxide decomposes according to the equation below.

$$
\text { hydrogen peroxide } \rightarrow \text { water }+ \text { oxygen }
$$

(a) State the total number of atoms which are bonded in one molecule of hydrogen peroxide.
(b) Complete the bonding diagram below to show

- the chemical symbols of the elements in a molecule of water,
- the arrangement of the outer electrons of each atom.

(c) Fig. 1.1 shows apparatus which a student used to measure the rate at which hydrogen peroxide decomposes.

Fig. 1.1
The student measured the time for a known volume of oxygen gas to collect in the measuring cylinder.

Table 1.1 shows results the student obtained for four experiments, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.
Table 1.1

experiment	volume of oxygen gas collected /cm	
A	40	time taken for oxygen to collect /seconds
B	40	35
C	40	15
D	40	10

(i) State and explain in which experiment, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, the reaction rate was the highest.
\qquad
\qquad
\qquad
(ii) State and explain, in terms of particles, one variable (factor) which the student could have changed in order to obtain the results shown in Table 1.1.
\qquad
\qquad
\qquad
\qquad

2 Fig. 2.1 shows the inside of a refrigerator.

Fig. 2.1
(a) (i) Draw arrows on Fig. 2.1 to show what happens to the air cooled by the freezing compartment.
(ii) Use the idea of density to explain why this happens.
\qquad
\qquad
(b) When the refrigerator is used for 60 minutes, 360000 joules of electrical energy are converted.
(i) How many joules of energy are converted per second?
\qquad joules
(ii) What is the power of the refrigerator?
(c) The refrigerator has two lamps inside. The supply voltage is 240 V and the current passing through each lamp is 0.04 A .
(i) Show that the resistance of one lamp is 6000Ω.

State the formula that you use and show your working.
formula used
working
(ii) The lamps are connected together in parallel.

Calculate the combined resistance of the two lamps.
State the formula that you use and show your working.
formula used
working

3 Fig. 3.1 shows a plant, and also a cell from part of the plant.

Fig. 3.1
(a) From which part of the plant, A, B, C or D, does the cell come?
\qquad
(b) On the diagram of the cell in Fig. 3.1, label the following structures.

Use label lines and the appropriate letters.
P a partially permeable membrane
Q the part of the cell that contains DNA
\mathbf{R} a part of the cell that contains a substance whose molecules contain magnesium
(c) When a leaf is tested for starch, it is first boiled in water and then put into hot alcohol.

Explain why these steps are necessary.
boiling in water \qquad
\qquad
putting into hot alcohol \qquad
(d) Part A of the plant in Fig. 3.1 is a flower.
(i) Is this an insect-pollinated or a wind-pollinated flower?

Explain your answer.
type of pollination
explanation
\qquad
(ii) Some pollen from one of the flowers on this plant is transferred onto the stigma of another flower on the same plant. The male gamete in the pollen fertilises a female gamete in the flower.

Is this asexual reproduction or sexual reproduction?
Explain your answer.
type of reproduction
explanation
\qquad
(iii) Explain why a plant breeder may prefer to use an asexual method of propagation of his plants, rather than a sexual method.
\qquad
\qquad

4 The apparatus in Fig. 4.1 can be used to study the reaction between potassium and oxygen.

Fig. 4.1
(a) Suggest why the flask becomes warm during the reaction.
\qquad
\qquad
(b) One of the compounds formed in this reaction is potassium oxide.

The electron configurations of a potassium atom and an oxygen atom are shown below.

K	2.8 .8 .1
O	2.6

Use this information to explain the bonding in potassium oxide. In your answer you should describe any changes in the electron configurations of these atoms, and deduce the chemical formula of potassium oxide.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Another compound formed in the reaction in Fig. 4.1 is potassium peroxide, $\mathrm{K}_{2} \mathrm{O}_{2}$. When potassium peroxide is added to water the products are potassium hydroxide and oxygen gas.
(i) A student attempted to work out the balanced equation for this reaction. His attempt is shown below.

$$
2 \mathrm{~K}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}+\mathrm{O}_{2}
$$

His teacher said this attempt was incorrect. Explain why this attempt is incorrect, and write down the correct equation.
\qquad
\qquad
\qquad
(ii) Describe how the student should test the gas given off to confirm that it is oxygen.
\qquad
\qquad
(iii) The student found that the pH of the final mixture was 13 .

Write the formula and charge of the ion present in the mixture which is responsible for this pH value.

5 A space rocket is launched to the Moon.
(a) After launch, the empty fuel tanks are released and fall back to Earth. As a tank falls, two forces act on it as shown in Fig. 5.1.

Fig. 5.1
(i) Name forces F_{1} and \mathbf{F}_{2}.
F_{1} \qquad
F_{2}
(ii) As it falls, the tank accelerates because F_{1} is greater than F_{2}.

What will happen to the size of force F_{2} as the tank goes faster?
(iii) Eventually the two forces will balance each other.

How will this affect the speed of the falling tank?
Explain your answer.
\qquad
\qquad
\qquad
(b) The rocket travels 400000 km to the Moon in 80 hours.

Calculate the average speed of the rocket.
State the formula that you use and show your working.
formula used
working
(c) One of the astronauts on the rocket has a mass of 90 kg . The gravitational field strength of the Moon is about one-sixth that of the Earth.

State the differences, if any, between
(i) the mass of the astronaut on the Earth and on the Moon,
(ii) the weight of the astronaut on the Earth and on the Moon.
\qquad

6 Tuberculosis (TB) is an infectious disease caused by a bacterium. HIV/AIDS is caused by a virus.
(a) Name the cells in the body that help to destroy harmful bacteria and viruses by
(i) producing antibodies,
\qquad
(ii) phagocytosis
\qquad .
(b) Table 6.1 shows the percentage of people with TB and HIV/AIDS in four parts of the world in 2005.

Table 6.1

part of the world	percentage of people with TB	percentage of people with HIV/AIDS
sub-Saharan Africa	0.51	7.2
Southeast Asia	0.35	1.1
Americas	0.07	0.7
Europe	0.06	0.5

(i) Describe any pattern that seems to link the percentages of people with TB and with HIVIAIDS.
\qquad
\qquad
(ii) The virus that causes AIDS infects white blood cells.

Explain how this could be responsible for the pattern that you have described in (i).
\qquad
\qquad
\qquad
(c) In many countries, young people are vaccinated against TB. They are given an injection of weakened TB bacteria.

Explain how this vaccination could make a person immune to TB.
\qquad
\qquad

7 Aluminium, iron, sodium and chlorine are important elements produced by the chemical industry.
(a) State which of the elements above
(i) has atoms which are converted into ions by gaining an electron,
(ii) has atoms which contain 3 electrons in their outer shells.
(b) When chlorine gas is bubbled into a colourless solution of sodium bromide, the solution turns orange.

Explain this observation.
\qquad
\qquad
(c) Fig. 7.1 shows a blast furnace which is used to convert iron(III) oxide into iron.

Fig. 7.1
The balanced equations of the three main chemical reactions in the blast furnace are shown in Fig. 7.1. Each reaction is a redox reaction.
(i) State two substances, shown in Fig. 7.1, which are reduced.

Explain your answer briefly.
\qquad
\qquad
\qquad
(ii) Use the relative atomic masses shown on the Periodic Table to calculate the relative formula mass of iron(III) oxide.

Show your working.

8 A student is having a medical examination.
(a) A dentist checks the student's teeth using a dental mirror. This is shown in Fig. 8.1.

Fig. 8.1
(i) Draw a ray of light from the back of tooth \mathbf{A} to the dentist's eye to show how the dentist is able to see the back of the tooth.

On the ray, draw arrows showing the direction in which light travels.
(ii) Describe how the dentist could find the density of an irregular object such as an extracted tooth.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The doctor wants to use a small torch to look down the student's throat. When he switches the torch on, it does not work.

Fig. 8.2 shows the circuit diagram for the torch.

Fig. 8.2
(i) Explain what is wrong with the torch.
\qquad
\qquad
(ii) Draw the correct circuit diagram.

BLANK PAGE

9 Fig. 9.1 shows part of the carbon cycle.

Fig. 9.1
(a) Name the process labelled \mathbf{X} on Fig. 9.1.

(b) Explain how carbon dioxide is returned to the air from the bodies of dead organisms.
\qquad
\qquad
(c) Describe how fossil fuels are formed.
\qquad
(d) Fossil fuels are burned in cars, trucks and other vehicles.

Fig. 9.2 shows the quantity of sulphur dioxide and nitrogen oxides emitted from vehicles in a European country between 1990 and 2003. Over this period, the country brought in measures to try to decrease the emissions of these gases.

The number of vehicles using the roads increased over this time period.

Fig. 9.2
(i) Suggest a reason for the trend in sulphur dioxide emissions between 1990 and 2003.
\qquad
\qquad
(ii) Catalytic converters were introduced into this country in 1993. They are fitted onto car exhaust systems, and they contain catalysts that cause nitrogen oxide to be reduced to nitrogen.

Suggest two reasons why nitrogen oxides had not been completely eliminated from car exhaust gases by 2003.

1. \qquad
\qquad
2. \qquad
(iii) Explain how emissions of sulphur dioxide and nitrogen oxides can harm living organisms.
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).
en to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

