

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE	
* 1 7	COMBINED SC	IENCE	0653/31
°,	Paper 3 (Extend	led)	May/June 2011
5			1 hour 15 minutes
6 2	Candidates ans	wer on the Question Paper.	
3 2		aterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	

This document consists of 19 printed pages and 1 blank page.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

1 Dung beetles live in places where large herbivores, such as elephants, buffalo or cattle, also live. The beetles collect dung produced by the herbivores and make it into a ball, which they roll away and bury.

They lay eggs on the buried ball of dung, so that when their larvae hatch they can feed on the dung. The adults also feed on the dung.

Fig. 1.1 shows a dung beetle rolling a ball of dung.

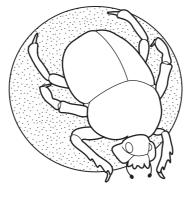


Fig. 1.1

(a) Dung beetles play an important role in the carbon cycle.

Using the information above, suggest how dung beetles can help a carbon atom in animal dung to become part of a carbohydrate molecule within a plant.

(b) The buried dung adds nitrates to the soil. Explain how this can help plants to grow better. For

Examiner's Use

0653/31/M/J/11

(c)	Farmers may use	insecticides	(pesticides	that kill	insects)	on their I	and.
-----	-----------------	--------------	-------------	-----------	----------	------------	------

(i) Explain why farmers use insecticides.

[2]

(ii) Using the information above, explain why using insecticides on land where cattle graze could reduce the growth of grass.

[2]

[Turn over

For Examiner's Use

www.XtremePapers.net

0653/31/M/J/11

2 The chemical formulae for some compounds (minerals) found in rocks are shown below.

CaMg(CO3)2dolomiteKA1Si3O8potassium feldsparNaA1Si3O8sodium feldsparCaCO3calcite

(a) A white powder is known to be either potassium feldspar or sodium feldspar.

Describe a test and its results which would enable a chemist to find out which of these minerals is contained in the white powder.

[2]

(b) Calculate the relative formula mass of calcite.

Show your working.

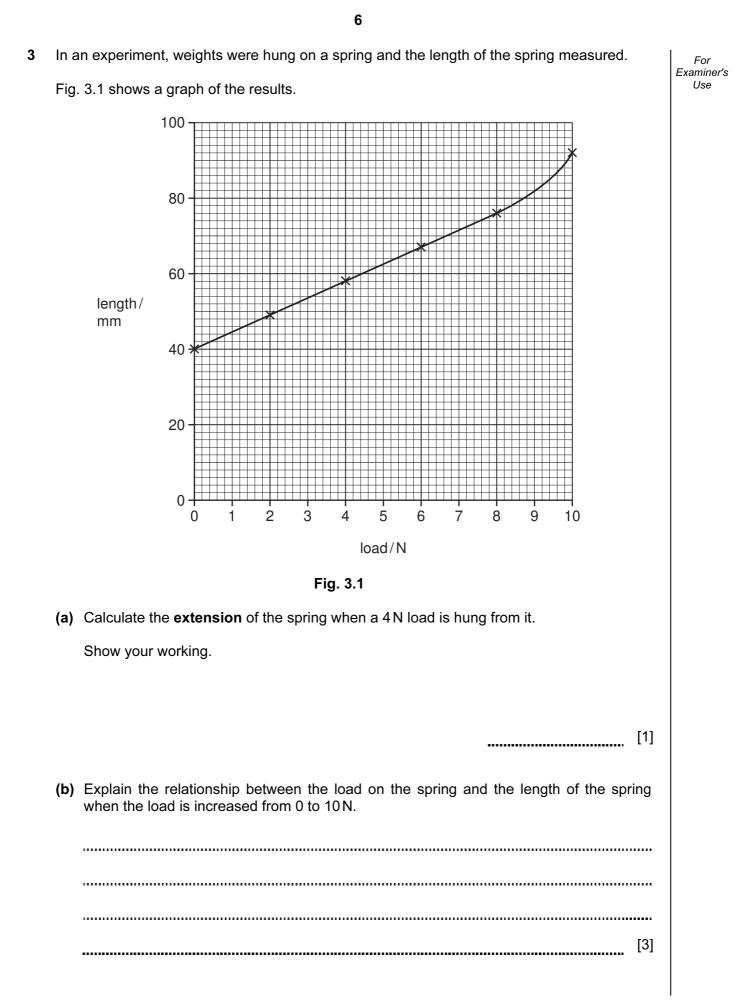
.....[1]

For Examiner's Use

- (c) When dolomite is strongly heated, carbon dioxide gas is given off and a mixture of calcium and magnesium oxides remains.
 - (i) The symbolic equation for this reaction which is shown below is **not** balanced.

Balance the equation.

 $CaMg(CO_3)_2 \longrightarrow CaO + MgO + CO_2$


© UCLES 2011

0653/31/M/J/11

	(ii)	Name the type of chemical reaction in (i) and state the evidence you have used to decide your answer.	For Examiner's Use
		type of reaction	
		evidence	
		[2]	
(d)		tudent adds some water to some calcium oxide. She observes that an exothermic ction occurs and an alkaline solution is formed.	
	(i)	State the ion whose concentration increases when calcium oxide reacts with water.	
		[1]	
	(ii)	The student then adds dilute hydrochloric acid to the solution from (i).	
		Write a word equation for the neutralisation reaction which occurs.	
		[2]	

0653/31/M/J/11

[Turn over

0653/31/M/J/11

(c) Fig. 3.2 shows a wooden bird suspended from an identical spring.

Fig. 3.2

The total length of the spring is 51 mm.

(i) Use the graph in Fig. 3.1 to find the weight of the bird. Show your working.

[1]

For Examiner's Use

(ii) The density of the wood used to make the bird is $0.8 \,\mathrm{g/cm^3}$.

Use your answer to (i) to calculate the volume of the bird in cubic centimetres.

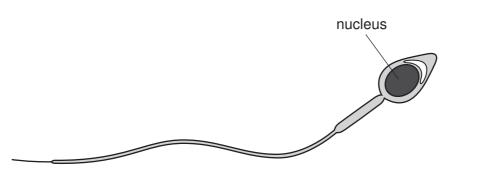
The gravitational field strength of the Earth is 10N/kg.

State any formula that you use and show your working.

formula used

working

[3]


© UCLES 2011

0653/31/M/J/11

[Turn over

For Examiner's Use

4 Fig. 4.1 shows a sperm cell.

- (a) On Fig. 4.1, use label lines to label and name **two** structures that are found in **all** animal cells. [2]
- (b) Name the organ in which sperm are produced. [1]
- (c) An investigation was carried out into the oxygen use and energy use of sperm while they were at rest and while they were swimming.

For each measurement, the researchers calculated the amount of oxygen and the amount of energy used by 10^9 (one thousand million) sperm.

The results are shown in Table 4.1.

Table 4.1

	oxygen use/units per 10 ⁹ sperm per hour	energy use/joules per 10 ⁹ sperm per hour
resting sperm	24	46
swimming sperm	83	164

(i) Suggest why the researchers measured the oxygen use and energy use for 10^9 sperm, rather than for a single sperm.

[1]

© UCLES 2011

0653/31/M/J/11

9

(ii)	Explain why more oxygen is used when the sperm are using more energy.	For Examiner's
		Use
	[2]	
(iii)	Calculate the total power output of a group of 10 ⁹ swimming sperm.	
	State the formula that you use and show your working.	
	formula	
	working	
	working	
	[3]	
(iv)	In order to reach an egg, a human sperm has to swim from the top of the vagina to an oviduct, through a thin layer of liquid.	
	Explain how the shape of the sperm, shown in Fig. 4.1, reduces the energy required to swim this distance.	
	[2]	

0653/31/M/J/11

(a) Nuclear reactors can be used in power stations to produce energy for generating 5 For electricity. Examiner's Use (i) Suggest one advantage and one disadvantage of generating electricity in this way. advantage disadvantage _____ [2] (ii) Describe what happens to an atom during nuclear fission.[1] (iii) Below is a newspaper article written by someone who has a poor understanding of radioactivity. There was a leak of radiation from our local nuclear power station yesterday. The radiation blew across farmland. It emits gamma particles which are harmful to wildlife. Write down **one** mistake reported in the article. Explain why this is a mistake. mistake explanation [2]

0653/31/M/J/11

(b) A badge made from photographic film can be used to check the exposure of the workers to radiation. A simple badge has two sections **A** and **B** for the detection of beta and gamma radiation.

Fig. 5.1 shows a worker wearing his badge.

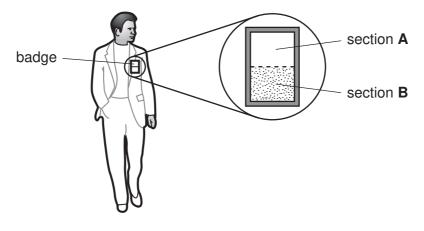
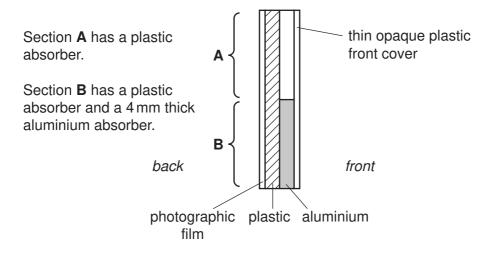



Fig. 5.2 shows the side view through the badge.

When the photographic film from the badge is developed, it turns black where it has been exposed to radiation.

(i) Complete Table 5.1 to show whether the photographic film will turn black when exposed to beta or gamma radiations.

Table 5.1

radiation	will section A turn black?	will section B turn black?
beta		
gamma	yes	

For Examiner's Use

[2]

[Turn over

12

	(ii)	Explain why the badge can not be used to detect alpha radiation.	For Examiner's Use
		[[1]
(c)		ha, beta and gamma radiations behave differently when they are passed through a ctric field.	ın
	(i)	Explain why gamma radiation is not deflected.	
		[[1]
	(ii)	Explain why alpha and beta radiation are deflected in opposite directions.	
		[[1]

0653/31/M/J/11

- 6 (a) Air is a mixture of elements and compounds. The two main elements in air are nitrogen and oxygen. Nitrogen dioxide, NO₂, is a compound of nitrogen and oxygen.
 - (i) Complete Table 6.1 by writing **M** in the right hand column if the description refers to a **mixture** of nitrogen and oxygen or **C** if it refers to the **compound**, nitrogen dioxide.

description	M or C
nitrogen atoms are bonded to oxygen atoms	
relative amounts of nitrogen and oxygen can vary	
little or no energy change when formed from nitrogen and oxygen	
chemical properties are very different from either nitrogen or oxygen	

Table 6.1

(ii) The gases nitrogen and oxygen can be separated by fractional distillation from air which has been cooled and pressurised so that it turns into a liquid.

Explain briefly how fractional distillation separates nitrogen and oxygen from liquefied air.

[2]

(b) Nitrogen and hydrogen can be made to react together to form ammonia, NH₃. This reaction requires a solid iron catalyst and a high temperature.

Explain, in terms of molecular collisions, why increasing the temperature increases the rate of reaction.

[2]

0653/31/M/J/11

www.XtremePapers.net

[2]

(c) The diagrams in Fig. 6.1 show the outer electron shells of atoms of the elements hydrogen and sulfur.

For Examiner's Use

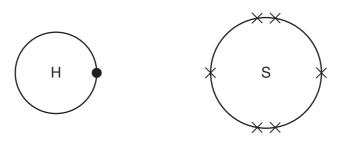
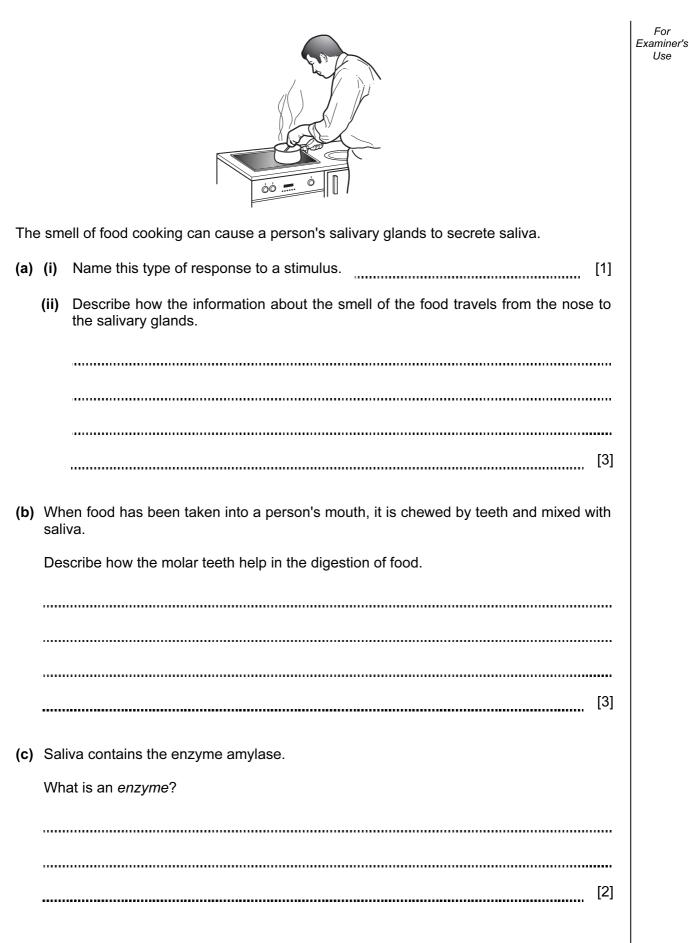


Fig. 6.1


When these atoms bond together, they form a covalent compound whose formula is H_2S .

Use the information shown in these diagrams to explain why the formula of the compound is H_2S .

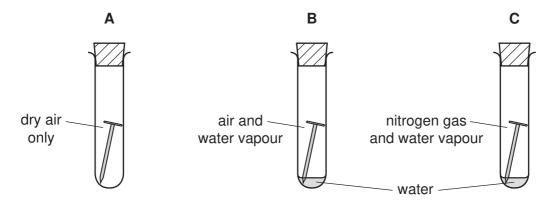
You may wish to draw a diagram to help your explanation.

[2]

0653/31/M/J/11

7

0653/31/M/J/11


For

Use

8 A student carried out an experiment to find which substances in the environment caused nails made of mild steel to become rusty.

For Examiner's Use

She selected three identical nails and placed them in sealed test-tubes, **A**, **B** and **C**, as shown in Fig. 8.1.

(a) Predict in which tube, **A**, **B** or **C**, the nail became rusty, and explain why the nail did **not** rust in either of the other two tubes.

[3]

- (b) Stainless steel does not rust because it is protected by a very thin layer which contains chromium oxide.
 - (i) Chromium oxide contains chromium ions, Cr^{3+} , and oxide ions, O^{2-} .

Deduce the chemical formula of chromium oxide.

Explain how you obtained your answer.

[2]

0653/31/M/J/11

(ii) Explain why an oxide ion carries a double negative (2-) electrical charge.

[2]

(c) Steel is used to make the chain of a bicycle. To prevent rusting, the chain is covered by oil made of hydrocarbon molecules.

The oil used to protect the bicycle chain contains mainly hydrocarbon molecules which do **not** contain any double bonds.

steel chain

(i) Describe a chemical test and its result that would show whether or not a hydrocarbon oil contained molecules with double bonds.

[2]

(ii) Suggest **one** property of a hydrocarbon oil which makes it suitable for use as a barrier to prevent rusting.

0653/31/M/J/11

For Examiner's Use

- The speakers of three MP3 music players are being compared. 9
 - (a) The speakers are tested to find the range of frequencies they produce.

Table 9.1 shows the results.

Table 9.1

speaker	range of frequencies/Hz
Α	100 to 10000
В	20 to 25000
С	20 to 40000

(i) What is meant by the term *frequency*?

..... [1]

.....

(ii) Use the information in Table 9.1 to suggest why the music played through speaker A might not sound as good as the other two speakers.

.....

-[1]
- (iii) Music played through speakers **B** and **C** sounds the same. Suggest a reason for this.

[1]

(b) Two speakers each with a resistance of 8Ω are connected in parallel.

Calculate their combined resistance.

State the formula that you use and show your working.

formula used

working

[3]

For Examiner's Use

0653/31/M/J/11

BLANK PAGE

19

0653/31/M/J/11

	4	0	Helium 4	0	02	NP 1	Neon	2	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86		175	Lu	71		Ļ	Lawrencium 103																											
	1174	>			19	Ľ	Fluorine	2 2 2 2 2	CI	Chlorine 17	80	Ŗ	Bromine 35	127	I	lodine 53		At	Astatine 85		173	٩۲	70		No	Nobelium 102																											
	111	>	-											16	0	Oxygen		ŝ	Sulfur 16	62	Se	Selenium 34	128	Те	Tellurium 52		Ро	Polonium 84		169	Tm	1 nuinu		Md	Mendelevium 101																		
		>																														14	z	Nitrogen		.	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83		167	Ш	Eroium 68		E	Fermium 100
	10	2				с С	Carbon		Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82		165	Р	ноітит 67		Es	Einsteinium 99																											
	=	≡					Boron		AI	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81		162	D	bysprosium 66		ັວ	Californium 98																											
												Zn	Zinc 30	112	B	Cadmium 48	201	Hg	Mercury 80		159	qT	65		BĶ	Berkelium 97																											
											64	Cu	Copper 29	108	Ag		197	Au	Gold 79		157	Gd	ы 64			Curium 96																											
	aroup										59	ÏZ	Nickel 28	106	Pd	Palladium 46	195	Ł	Platinum 78		152	Eu	Europium 63		Am	Americium 95																											
	5										26	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77		150	Sm	Samarium 62			Plutonium 94																											
			Hydrogen	-							56	Fe	lron 26	101	Ru	Ruthenium 44	190	0s	Osmium 76				Promernium 61		ЧN	Neptunium 93																											
											55	Mn	Manganese 25		ЪС	Technetium 43	186	Re	Rhenium 75		144		Neodymum 60	238		Uranium 92																											
											52	່ວ	Chromium 24	96	Mo	Molybdenum 42	184	8	Tungsten 74		141	Pr	59 59		Ра	Protactinium 91																											
											51	>	Vanadium 23	93	qN	Niobium 41	181	Та	Tantalum 73		140	မီ	Cenum 58	232	Ч	Thorium 90																											
											48	F	Titanium 22	91	Zr	Zirconium 40	178	Ŧ	Hafnium 72					nic mass	lodi	nic) number																											
											45	Sc	Scandium 21	68	~	Yttrium 39	139	La	Lanthanum 57 *	227 Actinium 89	cariac	eries		a = relative atomic mass	X = atomic symbol	b = proton (atomic) number																											
	:	=			6	Be	Beryllium	4	Ma	Magnesium 12	40	ca	Calcium 20	88	S	Strontium 38	137		Barium 56	226 Rad 88	*58-71 I anthanoid cariac	190-103 Actinoid series			××	q																											
	.	_			7		Lithium	23	Na	Sodium	39	¥	Potassium 19	85	Rb	Rubidium 7	133	Cs	Caesium 55	Francium	71	-103	L		Key	q																											

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2011

0653/31/M/J/11