



# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

**COMBINED SCIENCE** 

0653/22

Paper 2 (Core)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Exam | iner's Use |
|----------|------------|
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| 5        |            |
| 6        |            |
| 7        |            |
| 8        |            |
| 9        |            |
| Total    |            |

This document consists of 21 printed pages and 3 blank pages.



1 Coral reefs are found in shallow seawater. Limestone is a common type of rock found in the Earth's crust. Both coral reefs and limestone are made mainly of the ionic compound, calcium carbonate.

For Examiner's Use

(a) A student used the apparatus shown in Fig. 1.1 to test a rock sample to discover whether or not it is limestone.

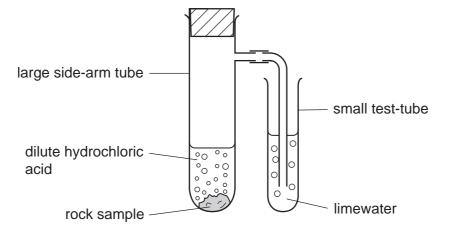



Fig. 1.1

The student observed that a gas was given off and that the limewater in the small test-tube became cloudy.

| (i)   | Name the gas that was given off                                                   |                                          | [1]  |
|-------|-----------------------------------------------------------------------------------|------------------------------------------|------|
| (ii)  | State the chemical formula of hydrochlor                                          | ic acid.                                 |      |
|       |                                                                                   |                                          | [1]  |
| (iii) | After some time, the student observed piece of the rock sample remained in the    | 0 11                                     | nall |
|       | Explain why gas stopped forming.                                                  |                                          |      |
|       |                                                                                   |                                          |      |
|       |                                                                                   |                                          |      |
|       |                                                                                   |                                          | [2]  |
| (iv)  | The student carried out a flame test on t arm tube. This test produced an orange- | •                                        | de-  |
|       | Name the element that this observation                                            | suggests is contained in the rock sample | €.   |
|       |                                                                                   |                                          | [1]  |

| (b) | In re                                                                                                      | In recent years, the amount of carbon dioxide dissolving in seawater has increased.                           |      |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|
|     | Dur                                                                                                        | During this period, many coral reefs have become weakened and damaged.                                        |      |  |  |  |  |  |  |
|     | (i) State and explain briefly how an increase in carbon dioxide concentration w affect the pH of seawater. |                                                                                                               |      |  |  |  |  |  |  |
|     |                                                                                                            |                                                                                                               | •••• |  |  |  |  |  |  |
|     |                                                                                                            |                                                                                                               |      |  |  |  |  |  |  |
|     |                                                                                                            |                                                                                                               | [2]  |  |  |  |  |  |  |
|     | (ii)                                                                                                       | Suggest a reason why an increase in carbon dioxide concentration might responsible for damage to coral reefs. | be   |  |  |  |  |  |  |
|     |                                                                                                            |                                                                                                               |      |  |  |  |  |  |  |
|     |                                                                                                            |                                                                                                               | [1]  |  |  |  |  |  |  |

**2 (a)** Fig. 2.1 shows the horizontal forces acting on an aircraft moving along the runway. These forces are balanced.

For Examiner's Use



|     |       | Fig. 2.1                                                                     |     |
|-----|-------|------------------------------------------------------------------------------|-----|
|     | (i)   | The arrow to the right represents the driving force produced by the engines. |     |
|     |       | On the diagram, name the other force.                                        | [1] |
|     | (ii)  | Explain what is meant by the phrase forces are balanced.                     |     |
|     |       |                                                                              |     |
|     |       |                                                                              | [1] |
| (   | (iii) | Describe the movement of the aircraft when these forces are balanced.        |     |
|     |       |                                                                              |     |
|     |       |                                                                              | [1] |
| (b) | In th | ne air, the aircraft travels at 80 m/s for one hour.                         |     |
| ( ) |       | culate the distance travelled.                                               |     |
|     | Sta   | te the formula that you use and show your working.                           |     |
|     |       | formula used                                                                 |     |
|     |       |                                                                              |     |
|     |       | working                                                                      |     |
|     |       |                                                                              |     |
|     |       |                                                                              |     |
|     |       |                                                                              | [0] |
|     |       | m                                                                            | [2] |

| (c) |      | ople who fly frequently have greater exposure to ionising radiation than those wh not fly.                                 | 0  |
|-----|------|----------------------------------------------------------------------------------------------------------------------------|----|
|     | (i)  | Explain why exposure to ionising radiation may be harmful.                                                                 |    |
|     |      |                                                                                                                            |    |
|     |      |                                                                                                                            | 2] |
|     |      | l                                                                                                                          | -, |
|     | (ii) | This ionising radiation is cosmic radiation from outer space. This is one source of background radiation.                  | of |
|     |      | State <b>one</b> other natural source of background radiation.                                                             |    |
|     |      | [                                                                                                                          | 1] |
| (d) |      | e aircraft is able to navigate using radar. This involves using microwaves. These ar<br>t of the electromagnetic spectrum. | е  |
|     |      | me <b>one</b> other wave which is part of the electromagnetic spectrum and give a use for radiation.                       | r  |
|     | nar  | me                                                                                                                         |    |
|     | use  | [2                                                                                                                         | 2] |

6 (a) Complete the word equation for aerobic respiration. oxygen + [2] **(b)** Describe how oxygen is transported from the lungs to a cell in a human muscle. (c) An athlete ran on a treadmill at a slow speed for 5 minutes. She then ran on the same treadmill at a faster speed for 5 minutes. Fig. 3.1 shows the volume of oxygen she used per minute during both runs. 3.0 running fast 2.0 volume of running slowly oxygen per minute/dm3 1.0 0 0 2 3 running time/minutes Fig. 3.1 (i) State the volume of oxygen used per minute by the athlete before she began to run. [1] (ii) Describe how the volume of oxygen used per minute during the fast run differs from the slow run.

© UCLES 2011 0653/22/O/N/11

3

|     | (iii) | Suggest    | an explan  | ation for tl | ne differe | nces you ha | ave describ | ed in (ii). |     |   |
|-----|-------|------------|------------|--------------|------------|-------------|-------------|-------------|-----|---|
|     |       |            |            |              |            |             |             |             |     | ı |
|     |       |            |            |              |            |             |             |             |     | • |
|     |       |            |            |              |            |             |             |             | [2] | ] |
| (d) |       |            |            |              |            |             |             | smoking o   |     | ! |
|     | Exp   | olain what | is meant b | y emphys     | sema.      |             |             |             |     |   |
|     |       |            |            |              |            |             |             |             |     |   |
|     |       |            |            |              |            |             |             |             | [1] | ] |

4 Fig. 4.1 shows an electric hairdryer.

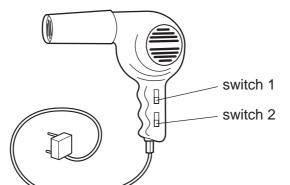



Fig. 4.1

(a) Fig. 4.2 shows the circuit diagram for the hairdryer.

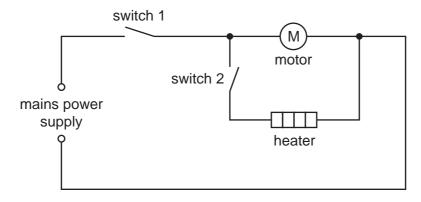



Fig. 4.2

| (i) | State which of the switches must be closed (on) for the heater in the hairdryer to |
|-----|------------------------------------------------------------------------------------|
|     | work.                                                                              |
|     |                                                                                    |

[1]

(ii) A student wanted to determine the resistance of the heater.

For Examiner's Use

Fig. 4.3 shows the circuit he built to measure the current passing through the heater and the potential difference across the heater.

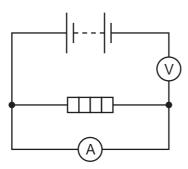



Fig. 4.3

His experiment did not work because his circuit was incorrect.

Draw the correct circuit in the space below.

|     |      |                                                                       | [2] |
|-----|------|-----------------------------------------------------------------------|-----|
| (b) | The  | e electricity used in the hairdryer was generated at a power station. |     |
|     | (i)  | Name a fossil fuel that can be used in power stations.                |     |
|     |      |                                                                       | [1] |
|     | (ii) | Power is transmitted from the power station over large distances.     |     |
|     |      | A high voltage is always used. Explain why.                           |     |
|     |      |                                                                       |     |
|     |      |                                                                       | [1] |

The high voltage is produced by a transformer.

Fig. 4.4 shows a simple transformer.

For Examiner's Use

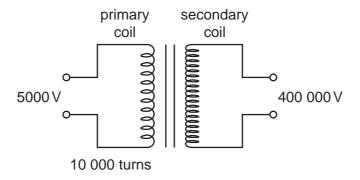



Fig. 4.4

(iii) Use the equation

$$V_p/V_s = N_p/N_s$$

to calculate the number of turns in the secondary coil.

Show your working.

|      | number of turns = [1]                                               |
|------|---------------------------------------------------------------------|
| (iv) | Transformers are also used between power lines and people's houses. |
|      | Explain why.                                                        |
|      |                                                                     |
|      |                                                                     |
|      | [2]                                                                 |

**5** Fig. 5.1 shows a section through a flower.

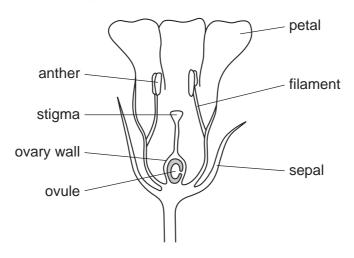



Fig. 5.1

| (a) | (i) | State the function of e | each of the following | parts of the flower. |
|-----|-----|-------------------------|-----------------------|----------------------|
|     |     |                         |                       |                      |

| petai  |     |
|--------|-----|
| anther | [2] |
|        |     |

(ii) Name the part of the flower that

| develops into a seed,  |         |
|------------------------|---------|
| develops into a fruit. | <br>[2] |

**(b)** Flowers are involved in sexual reproduction.

Complete the table to show whether each statement is true for asexual reproduction, sexual reproduction, both or neither.

Use a tick ( $\checkmark$ ) for a correct statement and a cross ( $^{\times}$ ) for an incorrect statement. You must write either a tick or cross in each space in the table.

The first statement has been completed for you.

| statement                                  | asexual reproduction | sexual reproduction |
|--------------------------------------------|----------------------|---------------------|
| gametes are involved                       | ×                    | ✓                   |
| new individuals are produced               |                      |                     |
| a zygote is produced                       |                      |                     |
| offspring are always genetically identical |                      |                     |

[3]

6 Nordic gold is an alloy of four metals used to make coins.





Table 6.1 shows information about the metals contained in Nordic gold.

Table 6.1

| metal     | % by mass in<br>Nordic gold | compound from which the metal is extracted |
|-----------|-----------------------------|--------------------------------------------|
| aluminium | 5                           | Al <sub>2</sub> O <sub>3</sub>             |
| copper    |                             | CuFeS <sub>2</sub>                         |
| tin       | 1                           | SnO <sub>2</sub>                           |
| zinc      | 5                           | ZnS                                        |

| (a) (i) | Complete Table 6.1 by stating the percentage of copper in Nordic gold.                                                                   |               |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|
| (ii)    | Suggest how Nordic gold could be made.                                                                                                   |               |  |  |  |  |  |
| (iii)   | In the right hand column, the elements present in compounds can be identified by their symbols.                                          | <br>[1]<br>Dy |  |  |  |  |  |
|         | Name a metallic element present in one of the compounds in Table 6.1 which not present in Nordic gold.                                   | is            |  |  |  |  |  |
|         | [                                                                                                                                        | [1]           |  |  |  |  |  |
| (iv)    | Suggest <b>two</b> properties of Nordic gold, other than its appearance, that make it suitable material from which to make coins.        | а             |  |  |  |  |  |
|         | 1                                                                                                                                        |               |  |  |  |  |  |
|         | 2                                                                                                                                        | 2]            |  |  |  |  |  |
| (b) (i) | Tin may be extracted from tin oxide by heating a mixture of tin oxide and carbon. The other product of this reaction is carbon monoxide. | n.            |  |  |  |  |  |
|         | Write a word chemical equation for this reaction.                                                                                        |               |  |  |  |  |  |
|         | г                                                                                                                                        | 11            |  |  |  |  |  |

|     | (ii) | State and explain which substance is <b>oxidised</b> when tin is extracted from tin oxide.                                      |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------|
|     |      | substance which is oxidised                                                                                                     |
|     |      | explanation                                                                                                                     |
|     |      | [2]                                                                                                                             |
| (c) | (i)  | Aluminium is extracted from the ionic compound aluminium oxide by electrolysis.                                                 |
|     |      | Explain the meanings of the following terms that are important in electrolysis.                                                 |
|     |      | cathode                                                                                                                         |
|     |      | electrolyte                                                                                                                     |
|     |      | [3]                                                                                                                             |
|     | (ii) | State how the position of aluminium in the Periodic Table shows that aluminium atoms have three electrons in their outer shell. |
|     |      |                                                                                                                                 |
|     |      | [1]                                                                                                                             |

## **BLANK PAGE**

7 (a) Fig. 7.1 shows a mother pushing her child in a baby buggy. She uses a force of 100 N.

For Examiner's Use



Fig. 7.1

The baby buggy is pushed 2000 m.

Calculate how much work has been done.

State the formula that you use and show your working.

formula used

working

J [2]

**(b)** A child is playing on a swing. This is shown in Fig. 7.2.

At the top of the oscillation, the child and swing are momentarily at rest.

For Examiner's Use

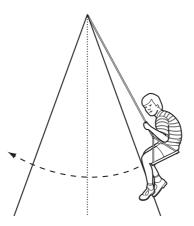



Fig. 7.2

(i) Write the correct energy type in the space to complete the box.

gravitational gravitational potential energy potential energy energy at the energy losses at the top of at the bottom of bottom of the the oscillation the oscillation oscillation [1] (ii) Suggest a form of energy which is lost from the system. [1] (iii) Suggest where the lost energy goes. [1] (c) The child weighs 400 N. The Earth's gravitational field strength is 10 N/kg.

kg [2]

© UCLES 2011 0653/22/O/N/11

(i) State the mass of the child.

| (ii) | The average density of the human body is 1020 kg/m <sup>3</sup> . |     |
|------|-------------------------------------------------------------------|-----|
|      | Calculate the volume of the child.                                |     |
|      | State the formula that you use and show your working.             |     |
|      | formula used                                                      |     |
|      | working                                                           |     |
|      |                                                                   |     |
|      |                                                                   |     |
|      | $m^3$                                                             | [1] |

8 Fig. 8.1 shows a tree frog that lives in a tropical rain forest.

For Examiner's Use



Fig. 8.1

| (a) |       | ee frogs feed on insects. Enzymes in their alimentary canal break down large olecules in the insects into small ones. |                 |                   |           |     |  |  |  |  |  |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-----------|-----|--|--|--|--|--|
|     | (i)   | State the correct biologic                                                                                            | cal term for th | is process.       |           | [1] |  |  |  |  |  |
|     | (ii)  | Explain why this process is necessary for the frog's survival.                                                        |                 |                   |           |     |  |  |  |  |  |
|     |       |                                                                                                                       |                 |                   |           |     |  |  |  |  |  |
|     |       |                                                                                                                       |                 |                   |           | [1] |  |  |  |  |  |
|     | (iii) | Use words from the list t                                                                                             | to complete th  | e sentences about | enzymes.  |     |  |  |  |  |  |
|     |       | carbohydrates                                                                                                         | cells           | denatured         | dissolved |     |  |  |  |  |  |
|     |       | hydrogen                                                                                                              | killed          | oxygen            | proteins  |     |  |  |  |  |  |
|     |       | Enzymes arein living organisms. One                                                                                   |                 |                   |           |     |  |  |  |  |  |
|     |       | hydrogen peroxide to wa                                                                                               | ater and        |                   | . Enzyme  | s   |  |  |  |  |  |
|     |       | are by high temperatures. [3]                                                                                         |                 |                   |           |     |  |  |  |  |  |
| (b) | Tro   | opical rain forests have a high species diversity.                                                                    |                 |                   |           |     |  |  |  |  |  |
|     | (i)   | Explain what is meant b                                                                                               | y species dive  | ersity.           |           |     |  |  |  |  |  |
|     |       |                                                                                                                       |                 |                   |           |     |  |  |  |  |  |
|     |       |                                                                                                                       |                 |                   |           | [1] |  |  |  |  |  |

| (ii) | Many species of tree frog have become extinct in the last ten years.                |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
|      | Suggest how the loss of tree frogs from the rain forest could damage the ecosystem. |  |  |  |  |  |  |
|      |                                                                                     |  |  |  |  |  |  |
|      |                                                                                     |  |  |  |  |  |  |
|      |                                                                                     |  |  |  |  |  |  |
|      | [2]                                                                                 |  |  |  |  |  |  |

9

| Hydrocarbons are compounds which contain only the elements hydrogen and carbon. |      |                                                                                                   |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| (a)                                                                             | The  | The simplest hydrocarbon is methane, which is an important fuel.                                  |  |  |  |  |  |  |  |  |  |
|                                                                                 | (i)  | State <b>one</b> natural source of methane.                                                       |  |  |  |  |  |  |  |  |  |
|                                                                                 |      | [1]                                                                                               |  |  |  |  |  |  |  |  |  |
|                                                                                 | (ii) | Complete the displayed (graphical) formula of a methane molecule.                                 |  |  |  |  |  |  |  |  |  |
|                                                                                 | (,   | H   C                                                                                             |  |  |  |  |  |  |  |  |  |
|                                                                                 |      | [2]                                                                                               |  |  |  |  |  |  |  |  |  |
| (                                                                               | iii) | Carbon dioxide and carbon monoxide are compounds released into the atmosphere when methane burns. |  |  |  |  |  |  |  |  |  |
|                                                                                 |      | Describe <b>one</b> environmental disadvantage of each compound.                                  |  |  |  |  |  |  |  |  |  |
|                                                                                 |      | carbon dioxide                                                                                    |  |  |  |  |  |  |  |  |  |
|                                                                                 |      |                                                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                 |      |                                                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                 |      | carbon monoxide                                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                 |      |                                                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                 |      | [3]                                                                                               |  |  |  |  |  |  |  |  |  |
|                                                                                 |      |                                                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                 |      |                                                                                                   |  |  |  |  |  |  |  |  |  |

For Examiner's Use

**(b)** Table 9.1 shows the molecular formulae and boiling points of four hydrocarbons.

For Examiner's Use

Table 9.1

| molecular formula               | boiling point/°C |
|---------------------------------|------------------|
| C <sub>6</sub> H <sub>14</sub>  | 69               |
| C <sub>10</sub> H <sub>22</sub> | 174              |
| C <sub>12</sub> H <sub>26</sub> | 216              |
| C <sub>5</sub> H <sub>12</sub>  | 36               |

| (i)  | Name a process which could be used to separate a mixture of the compounds in Table 9.1.                                       |
|------|-------------------------------------------------------------------------------------------------------------------------------|
|      | [1]                                                                                                                           |
| (ii) | Use the information in Table 9.1 to describe how the boiling point of a hydrocarbon is affected by the mass of its molecules. |
|      |                                                                                                                               |
|      | [2]                                                                                                                           |

## **BLANK PAGE**

## **BLANK PAGE**

DATA SHEET
The Periodic Table of the Elements

|       | 0   | 4 <b>He</b> Helium | 20<br><b>Ne</b><br>Neon       | 40<br><b>Ar</b><br>Argon            | 84<br><b>K</b>      | Krypton<br>36   | 131  | Xenon<br>Xenon<br>54         |     | Radon<br>86            |                             | 175<br><b>Lu</b><br>Lutetium<br>71                  | <b>Lr</b><br>Lawrencium<br>103                                          |
|-------|-----|--------------------|-------------------------------|-------------------------------------|---------------------|-----------------|------|------------------------------|-----|------------------------|-----------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
|       | II/ |                    | 19 <b>F</b> Fluorine          | 35.5 <b>C1</b> Chlorine             | 80<br><b>D</b>      | Bromine<br>35   | 127  | lodine 53                    | ,   | At<br>Astatine<br>85   |                             | 173<br><b>Yb</b><br>Ytterbium<br>70                 | Nobelium                                                                |
|       | VI  |                    | 16<br><b>O</b><br>Oxygen<br>8 | 32 <b>S</b> Sulfur 16               | <sup>79</sup><br>Se | Selenium<br>34  | 128  | <b>Le</b><br>Tellurium<br>52 |     | Po<br>Polonium<br>84   |                             | 169<br><b>Tm</b><br>Thulium<br>69                   | Md<br>Mendelevium<br>101                                                |
|       | ^   |                    | 14 <b>N</b> Nitrogen 7        | 31 <b>P</b> Phosphorus              |                     | Arsenic<br>33   | 122  | Sb<br>Antimony<br>51         | 209 | Bismuth<br>83          |                             | 167<br><b>Er</b><br>Erbium<br>68                    | Fm<br>Fermium<br>100                                                    |
|       | 2   |                    | 12<br><b>C</b><br>Carbon<br>6 | 28<br><b>Si</b><br>Silicon          |                     | Germanium<br>32 | 119  | So Tin                       | 207 | Pb<br>Lead             |                             | 165<br><b>Ho</b><br>Holmium<br>67                   | <b>ES</b><br>Einsteinium<br>99                                          |
|       | =   |                    | 11 <b>B</b> Boron 5           | 27<br><b>A t</b><br>Aluminium<br>13 | 70<br><b>Ga</b>     | Gallium<br>31   | 115  | Indium 49                    | 204 | <b>T t</b> Thallium 81 |                             | 162<br><b>Dy</b><br>Dysprosium<br>66                | <b>Cf</b><br>Californium<br>98                                          |
|       |     |                    |                               |                                     | 65<br><b>Zn</b>     | Zinc<br>30      | 112  | Cadmium<br>48                | 201 | Hg<br>Mercury<br>80    |                             | 159<br><b>Tb</b><br>Terbium<br>65                   | <b>Bk</b> Berkelium 97                                                  |
|       |     |                    |                               |                                     | °54                 | Copper<br>29    | 108  | <b>Ag</b><br>Silver<br>47    |     | Au<br>Gold<br>79       |                             | 157<br><b>Gd</b><br>Gadolinium<br>64                | Cm<br>Curium<br>96                                                      |
| Group |     |                    |                               |                                     | <sup>28</sup>       | Nickel<br>28    | 106  | Palladium<br>46              | 195 | Pt<br>Platinum<br>78   |                             | 152<br><b>Eu</b><br>Europium<br>63                  | Am Americium 95                                                         |
| ອັ    |     |                    |                               |                                     | °29                 | Cobalt<br>27    | 103  | Khodium<br>45                | 192 | Ir<br>Iridium<br>77    |                             | Samarium 62                                         | <b>Pu</b> Plutonium 94                                                  |
|       |     | T Hydrogen         |                               |                                     | 56<br><b>Fe</b>     | Iron<br>26      | 101  | <b>Ku</b><br>Ruthenium<br>44 | 190 | Osmium<br>76           |                             | Pm<br>Promethium<br>61                              | Neptunium 93                                                            |
|       |     |                    |                               |                                     | SS<br>Mn            | Manganese<br>25 | ı    | Technetium 43                | 186 | Rhenium                |                             | 144 <b>Nd</b> um Neodymium 60                       | 238 <b>U</b> Uranium                                                    |
|       |     |                    |                               |                                     | <b>ن</b> و          | Chromium<br>24  | 96   | Molybdenum<br>42             | 184 | Tungsten 74            |                             | 141<br><b>Pr</b><br>Praseodymium<br>59              | Pa<br>Protactinium<br>91                                                |
|       |     |                    |                               |                                     | 55 >                | Vanadium<br>23  | 93   | Niobium<br>41                | 181 | Tantalum               |                             | 140 <b>Ce</b> Cerium 58                             | 232<br><b>Th</b><br>Thorium                                             |
|       |     |                    |                               |                                     | 8 <b>F</b>          | Titanium<br>22  | 91   | Zirconium<br>40              | 178 | Hafnium ×              |                             | ı                                                   | a = relative atomic mass  X = atomic symbol  b = proton (atomic) number |
|       |     |                    |                               |                                     | Sc 55               | Scandium<br>21  | 88   | Yttrium 39                   | 139 | Lanthanum 57           | Actinium 89                 | d series<br>series                                  | a = relative atomic mass  X = atomic symbol  b = proton (atomic) numb   |
|       | =   |                    | 9 <b>Be</b> Beryllium         | 24 Magnesium 12                     | 6 <b>Ca</b>         | Calcium<br>20   | 88 ( | Strontium 38                 | 137 | <b>Ba</b><br>Barium    | 226 <b>Rad</b> ium Radium   | *58-71 Lanthanoid series<br>190-103 Actinoid series | æ <b>×</b>                                                              |
|       | _   |                    | 7<br>Li<br>Lithium            | 23 <b>Na</b> Sodium                 | ® <b>¥</b>          | Potassium<br>19 | 85   | Rubidium 37                  | 133 | Caesium<br>55          | <b>Fr</b><br>Francium<br>87 | *58-71 L                                            | Key                                                                     |

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.