

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/31

Paper 3 (Extended) May/June 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

1 Fig. 1.1 shows a section through a human heart.

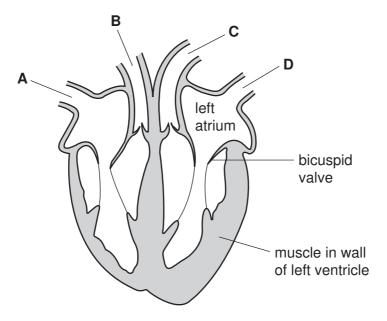


Fig. 1.1

(a) (i)	Which two of the blood vessels A , B , C and D contain oxygenated blood?		
	and	[1]	
(ii)	Which two of the blood vessels A , B , C and D are veins?		
	and	[1]	
(iii)	Describe what happens to the bicuspid valve during one heartbeat.		
		[2]	

(b)	In an adult, blood is oxygenated in the lungs. In a fetus, the lungs do not work and its
	blood is oxygenated in the placenta.

- The blood of the fetus is carried to the placenta in the umbilical artery, which comes from the left ventricle of its heart.
- The blood of the fetus is returned to its heart from the placenta in the umbilical vein, which carries it to the right atrium.

		plain how this system will affect the oxygen content of the blood in the right side of heart in a fetus, compared with an adult.
		[2]
(c)	Red	d blood cells contain a pigment (coloured substance) that transports oxygen.
	(i)	Name this pigment. [1]
	(ii)	What type of substance is this pigment? [1]
	(iii)	Name the inorganic ion (mineral) that is needed in the diet to enable the body to make this pigment.
		[1]
	(iv)	Most nutrients in the food we eat need to be digested. Explain why inorganic ions do not need to be digested.
		[2]
	(v)	Explain why body cells need oxygen.
		[2]

2	(a)		climber is exposed to ultraviolet radiation from the Sun. He knows that ultraviolet iation is harmful.
		(i)	State how ultraviolet radiation is harmful to humans.
			[1]
		(ii)	Describe one way in which the climber could protect himself from the ultraviolet radiation.
			[1]
	(b)		e climber makes a loud noise. The echo from a mountain 300 m away reaches him econds later.
			and the state of t
		Cal	culate the speed of sound in air using these results.
		Sta	te the formula that you use and show your working.
			formula
			working
			[2]

(-)	The	an be dangerous to make loud noises when there is melting snow on mountain weight of the snow makes the snow slide down the mountain and become lanche.	
	The	mass of snow in an avalanche is 400 000 kg and it is travelling at 60 m/s.	
	Cal	culate the momentum of the avalanche.	
	Sta	te the formula that you use and show your working.	
		formula	
		working	
			[2]
(d)		climber uses a torch at night. His torch contains four cells, a switch and a lamp nected in series.	all
	(i)	Draw a circuit diagram for this circuit using the correct symbols.	
	(i)	Draw a circuit diagram for this circuit using the correct symbols.	
	(i)	Draw a circuit diagram for this circuit using the correct symbols.	
	(i)	Draw a circuit diagram for this circuit using the correct symbols.	
	(i)	Draw a circuit diagram for this circuit using the correct symbols.	[2]
	(i) (ii)	Draw a circuit diagram for this circuit using the correct symbols. The potential difference across each of the cells in the circuit is 1.5 V.	[2]
	·		[2]
	·	The potential difference across each of the cells in the circuit is 1.5V.	[2]

(e)	The climber carries a nylon tent. As he walks, the tent rubs against his clothing. The fabric gains a negative static charge.
	Explain how this happens.
	[3]
(f)	The climber is able to start a fire by focusing rays of sunlight onto some dried twigs and grass, using a lens (magnifying glass).
	On Fig. 2.2, draw two rays of light from the Sun entering the lens and being brought to a focus.
	Sun
	lens
	twigs/grass
	Fig. 2.2
	[3]

3

(a)	A person swallows a radioactive substance.	For Examiner's
	Explain why this could be harmful.	Use
	[3]	
(b)	In a nuclear power station, nuclear fuel such as uranium gives out energy.	
	(i) State what happens to the uranium atoms.	
	[1]	
	(ii) Describe one problem associated with this process.	
	[2]	

4 A student used the apparatus shown in Fig. 4.1 to investigate the reaction between a solution of an acid **A** and 20.0 cm³ of a solution of the alkali, potassium hydroxide.

For Examiner's Use

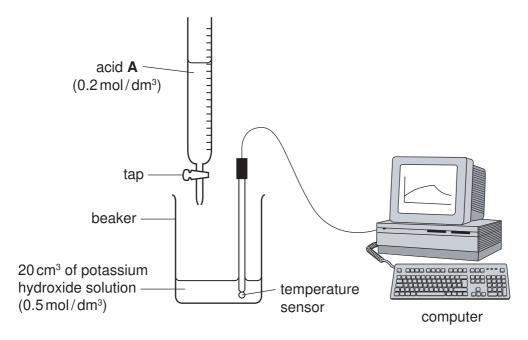


Fig. 4.1

Fig. 4.2 shows how the temperature of the mixture changed as the acid was added to the alkali in the beaker.

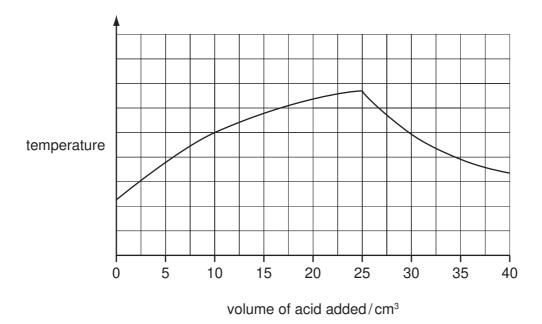


Fig. 4.2

© UCLES 2010 0654/31/M/J/10

(a)	(i)	State why the temperature of the mixture increased when the acid was first added to the alkali.	For Examiner's Use
		[1]	
	(ii)	Explain how the information in Fig. 4.2 shows that it took 25.0 cm ³ of the acid to neutralise 20.0 cm ³ of the potassium hydroxide solution.	
		[2]	
(b)	In t	the experiment, the concentrations of acid $\bf A$ and the potassium hydroxide solution re 0.2 mol/dm ³ and 0.5 mol/dm ³ respectively.	
	(i)	Use the equation	
		moles (dissolved) = volume (dm³) x concentration (mol/dm³)	
		to calculate the number of moles of both acid ${\bf A}$ and potassium hydroxide which neutralised each other in this reaction.	
		moles of acid A	
		moles of potassium hydroxide	
		[2]	
	(ii)	State the number of moles of acid A which would be needed to neutralise one mole of potassium hydroxide.	
		Explain your answer briefly.	
		moles of acid A	
		explanation	
		[1]	
((iii)	Write the ionic chemical equation which represents what happens when an aqueous acid reacts with aqueous alkali.	
		[2]	

(c) In the year 1807, metallic potassium was obtained from potassium hydroxide. Fig. 4.3 shows a simplified diagram of the apparatus that was used.

For Examiner's Use

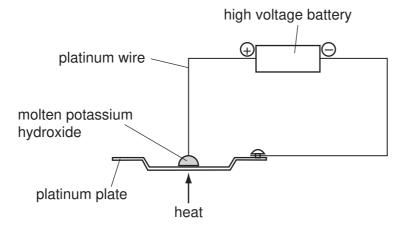


Fig. 4.3

Bubbles of gas were seen where the platinum wire touched the top of the potassium hydroxide. Shiny beads of molten potassium were seen where the potassium hydroxide rested on the platinum plate.

(i)	Name the process shown in Fig. 4.3.
	[1]
(ii)	Explain why the potassium metal formed where the potassium hydroxide touched the platinum plate.
	Your answer should include the ideas of electrical charge, atoms, ions and electrons.
	[3]

5 (a) Many houses are built with cavity walls with a gap between the outside wall and the inside wall. This gap is often filled with insulating board made of foam between two shiny metal foil surfaces.

For Examiner's Use

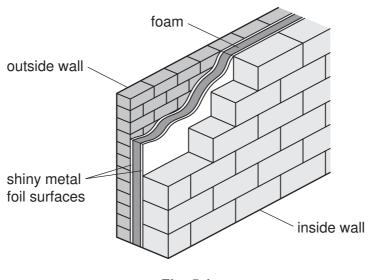


Fig. 5.1

The cavity wall insulation helps to reduce heat transfer, through the wall.

insulation helps reduce heat transfer.	and radiation to explain now cavity wall
	[3]

(b) Transformers are used to change the voltage of an a.c. supply. Fig. 5.2 shows a shaver unit, which contains a transformer, of the type found in many European homes.

For Examiner's Use

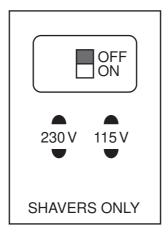


Fig. 5.2

The shaver unit has two sockets, one for shavers working at 115 V, the other for shavers working at 230 V. Fig. 5.3 shows how the sockets are wired to the output/secondary coils of a transformer.

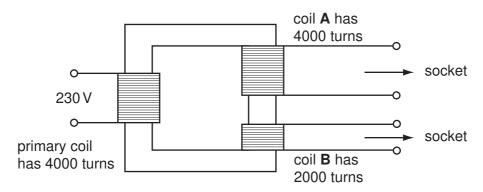


Fig. 5.3

(i)	Use Fig. 5.3 to explain which coil, A or B , gives an output of 115 V.
	coil
	explanation
	[1]
ii)	The transformer in a shaver unit is known as an isolating transformer and is designed to make the electrical appliance plugged into it safer to use in a bathroom.
	Explain why it is dangerous to use electrical appliances in bathrooms unless they have such safety protection.

© UCLES 2010 0654/31/M/J/10

(c) Fig. 5.4 shows an electromagnet being used in a door lock.

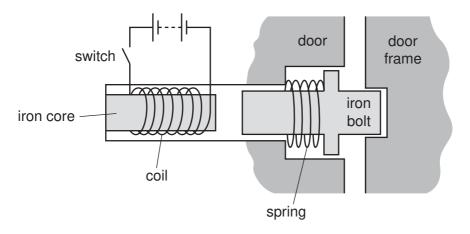


Fig. 5.4

(i)	When the switch is pressed, the iron bolt moves to the left.
	Explain why this happens.
	[3]
(ii)	Would this door lock work if the bolt was made of aluminium?
	Explain your answer.
	[1]
iii)	The electrical connections to the coil were accidentally reversed.
	Would the door lock with the iron bolt still work?
	Explain your answer.
	[1]
iv)	Suggest how the strength of the electromagnet could be increased.
	[1]

An experiment was carried out in Sweden into the effects of different types of fertiliser on 6 the crop yield. The experiment lasted 32 years, from 1958 to 1990.

For Examiner's Use

The land was divided into four plots. Three plots were treated with different fertilisers. The fourth plot had no fertiliser added.

Plot A manure (cattle droppings and straw)

Plot B manure sprayed with a liquid containing bacteria that act as

decomposers

Plot C NPK fertiliser (a mix of inorganic ions containing nitrogen, phosphorus

and potassium)

no fertiliser added Plot **D**

Table 6.1 shows some of the results of the experiment.

(a) (i) The inorganic fertiliser may contain nitrate ions, NO₃.

Table 6.1

nlot	treatment	mean yield per hectare per year/tonnes			
plot	treatment	wheat	potatoes		
Α	manure	2.98	35.5		
В	manure + bacteria	3.27	46.7		
С	NPK fertiliser	3.28	36.2		
D	no fertiliser	2.49	28.7		

Give the name	or formula	of one	other	ion	containing	nitrogen	that	could	be	four

nd in the inorganic fertiliser.

						[1]
(ii) Explain fertilise	why wheat give	en NPK fertilis	er gave a hi	gher yield tha	an wheat give	n no
						[3]

© UCLES 2010 0654/31/M/J/10

(iii)		the results from using manure + bacteria (plot B) with the results from K fertiliser (plot C), for both wheat and potatoes.
		wheat	
		potatoes	
			[0]
			[3]
(iv)		ur knowledge of the nitrogen cycle, suggest why the yield of potatoes on s greater than the yield on plot A .
			[2]
(b)	Lea	ching of fe	ertilisers from the soil may cause pollution of nearby waterways.
			the leaching of fertiliser into a river can cause the concentration of gen in the water to decrease to very low levels.
			[3]

7 Polymer molecules exist in both natural substances and in materials which have been made in industry.

For
Examiner's
1100

(a) Starch, cellulose and protein are all natural substances made of polymer molecules.

(i)	State the	name of	the	monomer	which	forms	starch
-----	-----------	---------	-----	---------	-------	-------	--------

TA.
11
 -

(ii) A sample of one of the natural substances was burned in pure oxygen. The mixture of gases which was formed was analysed and found to contain carbon dioxide, water vapour, nitrogen dioxide and sulfur dioxide.

Which one of the three natural substances had been burned?

Explain your answer.	
[3]

- **(b)** Nylon and melamine resin are polymers produced industrially. Nylon is a **thermoplastic** and melamine resin is a **thermoset**.
 - (i) Nylon is often formed into fibres which are used to make clothing, rope and guitar strings. Fig. 7.1 shows a simplified diagram of an industrial process which is used to produce nylon fibres.

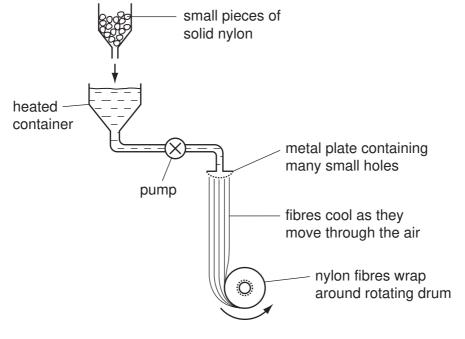
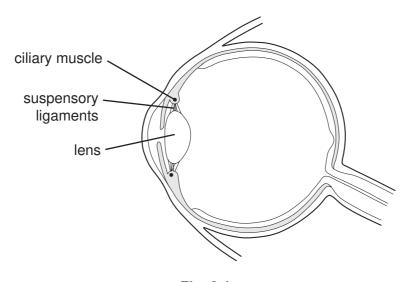


Fig. 7.1


Explain, in terms of the forces between molecules, why it is possible to form nylon fibres from solid nylon using the process in Fig. 7.1.
rol
[3]
Melamine resin is made into flat sheets for use as working surfaces in kitchens, where hot saucepans may come into contact with the surface.
working surface made from melamine resin
Explain, in terms of molecules, why melamine resin is a suitable material for working surfaces.
[2]
[2]

(ii)

8 Fig. 8.1 shows a section through a human eye.

[3]

- Fig. 8.1
- (a) On Fig. 8.1, use the letters and label lines to label each of these parts of the eye.
 - A the part that contains rods and cones
 - **B** the part that transmits nerve impulses to the brain
 - **C** the part that controls the amount of light that enters the eye

(D)	a nearby object.
	[3]

(c)) Eye colour is determined by genes, and is inherited. There are many different alleles for eye colour.						
Some genes have alleles that cause disease. Give one example of an infidisease, and describe how it can be passed from parents to offspring.							
	name of disease						
	how it is passed on						
	[3]						

9

(a)	The Tab	grid in Fig. 9.1 shows the arrangement of the first twenty elements in the Periodic	;			
	Tab	w				
Fig. 9.1						
	For	each of the elements described below, write the letter for each element in the	;			
		ect box in Fig. 9.1. The first one has been done as an example.				
		Element W is made of the lightest atoms.				
		Element X is in Period 3 and atoms of X have 2 outer electrons.				
		Element Y is the most reactive in Group 7 (Group VII).				
		Element Z is made of atoms which have 10 protons in their nuclei.				
		[3]				
(b)	Met	als have giant structures and are good conductors of electricity.				
	(i)	Complete and label the diagram of the structure of a typical metal. Your diagram	I			
		should show how the atoms are arranged.				
		[1]				
(ii) Use your diagram to explain why metals are good conductors of electricity.						
			ı			
			ı			
		[2]]			

(c) Welding is a process used to join pieces of metal together. Fig. 9.2 shows a simplified diagram of a method known as metal inert gas (MIG) welding. The metal wire and the pieces of metal to be joined are heated electrically, and melt together. When the molten metal cools, the pieces are permanently joined.

For Examiner's Use

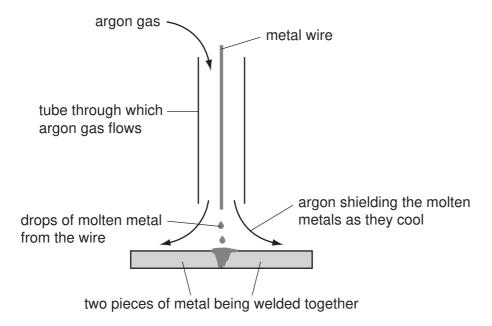


Fig. 9.2

i)	Argon is often used in MIG welding as shown in Fig. 9.2.
	Suggest a chemical reaction which is being prevented by the presence of argon.
	[2]
i۱	Draw a diagram of one atom of argon showing how all of its electrons are

(ii) Draw a diagram of one atom of argon showing how all of its electrons are arranged.

[2]

(iii)	Explain, in terms of their electron arrangement, why argon atoms do not react with the hot metals in MIG welding.
	[2]
	[-]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	Helium	20 Neon 10 A 40 A 40 A 40 A 70 A 70 A 70 A 70 A 7	84 Kr , Krypton 36	X Xe Xenon	Radon 86		175 Lu Lutetium	Lawrencium
	II/		19 Fluorine 9 35.5 C.1 Chlorine	80 Br Bromine	127 I lodine 53	At tatine		Yb Ytterbium	Nobelium Nobelium
	I		16 Oxygen 8 32 \$ \$ \$ Sulfur	79 Se Selenium	128 Te Tellurium			169 Tm Thulium	Md Mendelevium 101
	>		Nitrogen 7 31 9 Phosphorus 15	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	2		Carbon 6 Carbon 8 Silicon 14		119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	Esinsteinium 99
	=		11 BB Boron 5 A1 Aluminium 13		115 In Indium			162 Dy Dysprosium 66	Californium
			·	65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	BK Berkelium 97
				64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96
Group				59 Nickel	106 Pd Palladium 46	195 Pt Patinum 78		152 Eu Europium 63	
Gre				59 Co Cobalt	103 Rh Rhodium 45	192 I r Iridium		Sm Samarium 62	Pu Plutonium 94
		T Hydrogen		56 Fe Iron	Ruthenium			Pm Promethium 61	Np Neptunium 93
				55 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92
				52 Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium	181 Ta Tartalum		140 Ce Cerium	232 Th Thorium
				48 T Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
				Scandium	89 ×	139 La Lanthanum 57 *	227 AC Actinium 89	series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Mg Magnesium 112	40 Ca Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	а Х
	_		Lithium 3 23 8 8 8 8 8 8 8 8 8 8 11	39 K Potassium 19			Fr Francium 87	*58-71 L 190-103	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.