UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education | CANDIDATE
NAME | | | | | |-------------------|--|---------------------|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | # 8 2 1 0 3 7 2 6 7 0 ### **CO-ORDINATED SCIENCES** 0654/32 Paper 3 (Extended) May/June 2011 2 hours Candidates answer on the Question Paper. No Additional Materials are required. ### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES. Answer all questions. A copy of the Periodic Table is printed on page 28. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Exam | iner's Use | |----------|------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | 10 | | | Total | | This document consists of 26 printed pages and 2 blank pages. 1 Guanacos are relatives of camels and live in the Andes mountains in South America. They feed on grasses and other plants. They are hunted by pumas, and young guanacos may be killed by foxes. For Examiner's Use Fig. 1.1 shows a guanaco. Fig. 1.1 | (a) | (i) | State one feature, visible on Fig. 1.1, that indicates that guanacos are mammals | ; . | |-----|------|--|------------| | | | | [1] | | (| (ii) | State one feature, visible on Fig. 1.1, that could help guanacos to avoid be killed by pumas. | ing | | | | | [1] | For Use (b) Guanacos can live at very high altitudes, above 4000 metres, where the atmosphere is less dense than at sea level. Examiner's The blood of a guanaco contains four times as many red blood cells per cm³ as the blood of a human. This adapts the guanaco to its environment. Suggest an explanation for this. (c) Guanacos are an endangered species. Their numbers have fallen because of loss of suitable habitat and because of hunting by humans. Several countries in South America have conservation programmes to try to increase the numbers of guanacos. In one conservation programme, five male and five female guanacos were introduced into a suitable habitat of about 25 km². They were protected from humans. Fig. 1.2 shows what happened to the guanaco population over the next few years. Fig. 1.2 Explain the reasons for the shape of the graph. | (d) | People in South America domesticated guanacos at least 6000 years ago. They used artificial selection to produce a breed of guanacos that produced more meat, milk and wool and that were easy to keep as herds. These animals are now called llamas. | |-----|---| | | Explain how artificial selection could have produced llamas from guanacos. | [4] | For Examiner's Use 2 Lithium and its compounds have many important uses. The production of lithium metal involves three main stages. For Examiner's Use - Lithium compounds found in the Earth's crust are converted into lithium carbonate, Li₂CO₃. - Lithium carbonate is converted into lithium chloride, LiC1. | | 3 | Lithium chloride is melted and is electrolysed. | |-----|------|--| | (a) | Exp | plain why lithium is never found as the uncombined element in the Earth's crust. | | | | | | | | [1] | | (b) | The | e electron configurations of lithium ions and chloride ions are shown below. | | | | lithium ion 2 | | | | chloride ion 2,8,8 | | | (i) | Explain, in terms of protons and electrons, why a lithium ion has a single positive electrical charge but a lithium atom is uncharged (neutral). | | | | | | | | | | | | [2] | | | (ii) | Explain why lithium chloride is a solid with a high melting point. | | | | | | | | | | | | 101 | | | | [2] | | (c) | | ggest a word equation for a reaction in which lithium carbonate is converted into um chloride. | | | | [2] | (d) Fig. 2.1 shows the industrial electrolysis of molten lithium chloride. For Examiner's Use Fig. 2.1 | | (i) | Explain why the electrolyte must be kept molten. | | |-----|-------|---|---------| | | | |
[1] | | | (ii) | Describe how the electron configuration of each lithium ion changes when the arrive at the cathode during the electrolysis in Fig. 2.1. | ıey | | | | |
[1] | | (e) | Lith | ium carbonate is widely used as a drug to treat some types of mental illness. | | | | It is | s very important that compounds for use as drugs are made to high standards ity. | of | | | Sta | te one reason for this. | | | | | |
[1] | **3** (a) Fig. 3.1 shows a skier being pulled up a mountain slope by a cable (lift). For Examiner's Use Fig. 3.1 The skier weighs 700 N. She travels 120 m along the slope and rises by a vertical height of 55 m. Calculate the work done lifting the skier from the bottom to the top of the slope. You should ignore the work done against friction. State the formula that you use and show your working. formula used working [2] **(b)** Skiers use a ski pole in each hand to help control their motion. The ski poles work best when they only go into the snow for a few centimetres. For Examiner's Use Fig. 3.2 shows a skier using ski poles. Fig. 3.2 | | Explain, in terms of pressure, force and area, why the ski pole has a pointed end an large disc a few centimetres above this. | d a | |-----|---|---------| | | | ••••• | | | | | | | | | | | | [2] | | (c) | Explain why a skier keeps the lower surface of her skis smooth and well polished. | | | | |
[11 | | | | Γ.1 | **4** Fig. 4.1 shows underground layers of sedimentary rocks. The diagram is not drawn to scale. Some of these rock layers are permeable and contain fossil fuels trapped inside them. For Examiner's Use Fig. 4.1 (a) (i) Wood obtained from trees and compounds obtained from crude oil and natural gas can both be used as fuels. State **two** reasons why crude oil and natural gas are examples of *fossil fuels* but wood is not. | 1 | | |---|-----| | | | | | | | 2 | | | | [2] | | | | (ii) Fossil fuels contain mainly hydrocarbons. Wood contains cellulose which is a carbohydrate. Name an element which is combined in carbohydrate molecules but **not** in hydrocarbons. |--| | | | | 10 | | | |---------------|---------------------|---|--------------------------------|----------------------------------|-------| | (b) Th | ne molecular | formulae of three | hydrocarbon mole | ecules are shown below. | | | | | CH ₄ | C ₆ H ₁₄ | $C_{12}H_{26}$ | | | (i) | Draw the o | graphical (displaye | d) formula of C ₆ H | 14- | [1] | | (ii) | All of the alkanes. | molecules showr | n above are me | mbers of the homologous serie | es of | | | | similarity and on tain these molecul | | ne properties of the pure substa | nces | | | similarity | | | | | | | | | | | | | | difference | | | | | | | | | | | [2] | For Examiner's Use (c) In a car engine, the combustion of hydrocarbons produces a mixture of very hot waste (exhaust) gases. These gases are released from the car into the atmosphere, and some of them cause pollution because they are poisonous. Table 4.1 shows information about some of the gases in a car's exhaust. | substance in exhaust gases | % by volume | |-----------------------------|-------------| | nitrogen | 67 | | carbon dioxide | 12 | | water vapour | 0.05 | | oxygen | 11 | | carbon monoxide | 9 | | hydrocarbons (unburnt fuel) | 0.2 | | (1) | Suggest why the exhaust gas mixture contains a significant amount of hitrogen. | |-------|--| | | | | | | | | [2] | | (ii) | In all modern cars, the hot exhaust gases pass through a catalytic converter before they are released into the atmosphere. | | | Carbon monoxide and hydrocarbons are oxidised by oxygen as the exhaust gases pass through the catalytic converter. | | | State the purpose of the catalyst which is present inside the converter. | | | | | | [1] | | (iii) | Catalytic converters help to reduce the air pollution caused by car exhaust gases. | | | Use the information given in Table 4.1 and your answer to (ii) to explain how they do this. | | | | | | | | | | | | [3] | 5 (a) Nuclear reactors in power stations produce energy through nuclear fission. For Examiner's Use When uranium-235 is used in a reactor, the fission is started by a neutron hitting a uranium-235 atom. This results in two other atoms being produced and two neutrons released. $$^{235}_{92}$$ U + $^{1}_{0}$ n \longrightarrow $^{144}_{56}$ Ba + $^{90}_{36}$ Z + $^{2}_{0}$ n neutron 2 neutrons Use the Periodic Table on page 28 to identify atom **Z**. | atom Z is | [1 | |------------------|----| | | | (b) A nuclear reactor can also be used to power a submarine. Radiation is released during nuclear fission. The reactor has to be shielded to protect the crew from this radiation. | (i) | Suggest one | material | which | could | shield | а | nuclear | reactor | to | stop | radiation | |-----|-------------|----------|-------|-------|--------|---|---------|---------|----|------|-----------| | | escaping. | | | | | | | | | | | | | [1] | | |--|-----|--| | | | | | (ii) Des | scribe how bei | ng exposed to | ionising | radiation | can a | affect the | human | body | |----------|----------------|---------------|----------|-----------|-------|------------|-------|------| |----------|----------------|---------------|----------|-----------|-------|------------|-------|------| |
 |
 | |------|------| | | | | |
 | | | roı | (c) A nuclear reactor produces nuclear waste. Waste from a nuclear reactor contains a radioactive isotope with a half-life of 100 years. A sample of the waste gives a count rate of 3200 counts per minute. (i) Explain the meaning of the term isotope. [2] (ii) Calculate the time taken for the count rate of this sample of waste to drop to 400 counts per minute. Show your working. For Examiner's Use [2] **6** Fig. 6.1 shows some of the bones and muscles in the human arm. Fig. 6.1 | (a) | Name the structure A . | | |-----|---|------| | | A | [1] | | (b) | Explain how the structures shown in Fig. 6.1 can cause the arm to straighten. | | | | | | | | | | | | | | | | | [3] | | | | | | (c) | Muscles B and C are antagonistic muscles. | | | | Explain why a pair of antagonistic muscles, rather than a single muscle, is required move the arm at the elbow joint. | d to | | | | | (d) Bone is made up of the mineral calcium phosphate, and a protein called collagen. In many people, the mineral content of bone increases up to about the age of 20, after which it remains approximately constant until about the age of 50. For Examiner's Use A study was carried out in Brazil into the mineral content of the leg bones of school children between the ages of 10 and 19 years. The mineral content was measured as the mass of mineral per cm³ of bone. Some of the results are shown in Fig. 6.2. Fig. 6.2 | (1) | years. | |------|---| | | | | | [2] | | (ii) | From the age of about 50 years onwards, the mineral content of bone gradually decreases. If the mineral content of a person's bones becomes very low, a condition called osteoporosis occurs, in which the bones lose their strength and break very easily. | | | Use this information, and the data in Fig. 6.2, to suggest why it is important for a teenager to have a diet containing plenty of dairy products such as milk and cheese. | | | | | | | | | [2] | | (e) | The | human skeleton also contains cartilage. | |-----|------|---| | | (i) | State one difference between the properties of bone and cartilage. | | | | [1] | | | | | | | (ii) | State precisely where cartilage is found in the human arm shown in Fig. 6.1, and describe its function. | | | | | | | | | For Examiner's Use [2] # **BLANK PAGE** Please turn over for Question 7. 7 Fig. 7.1 shows a crane for use on building sites. | | Fig. 7.1 | | |-----|---|----| | (a) | Explain in terms of forces why the crane needs a counter-balance. | | | | | | | | | | | | [2 |] | | (b) | The crane in Fig. 7.1 is balanced. | | | | Calculate the moment of the load about the crane's supporting tower. Then calculate the distance of the counterbalance from the crane's supporting tower. | ; | | | State the formula that you use for your calculations and show your working. | | | | formula used | | | | working | moment of load | | | | distance of counterbalance [3 | [] | (c) A brick falls from the crane and hits the ground at a speed of 40 m/s. The air resistance on the brick can be ignored. For Examiner's Use (i) The acceleration due to gravity is $10 \,\mathrm{m/s^2}$. Calculate the time of the fall. State the formula that you use and show your working. formula used working [2] (ii) On the grid below, draw the speed-time graph for the falling brick. [3] For Examiner's Use | (iii) | The brick has a mass of 2 kg. | | |-------|--|-----| | | Calculate the kinetic energy of the brick as it hits the ground. | | | | State the formula that you use and show your working. | | | | formula used | | | | working | | | | | | | | | | | | | [2] | | (iv) | State the value of the potential energy of the brick, before it fell from the crane. | | | | Explain your answer. | | | | potential energy | | | | explanation | | | | | [2] | | | | at carries out each of the follo | owing functions. | |-----|---|----------------------------------|---------------------------------| | | (i) attracts insects to the flo | ower | [1] | | | (ii) makes pollen | | [1] | | (b) | Complete the table to descrand wind-pollinated flowers. | | he stigmas of insect-pollinated | | | feature | insect-pollinated flower | wind-pollinated flower | | | shape of stigma | | | | | position of stigma | | | | | | | [2] | | (c) | Describe what happens after the formation of a zygote. | er pollen has landed on the s | stigma of a flower, ending with | [4] | | (d) | | | ntain chlorophyll and cannot | | (d) | The cells in the petals of photosynthesise. | | ntain chlorophyll and cannot | | (d) | The cells in the petals of photosynthesise. | of most flowers do not co | ntain chlorophyll and cannot | | (d) | The cells in the petals of photosynthesise. | of most flowers do not co | ntain chlorophyll and cannot | | (d) | The cells in the petals of photosynthesise. | of most flowers do not co | ntain chlorophyll and cannot | | (d) | The cells in the petals of photosynthesise. | of most flowers do not co | ntain chlorophyll and cannot | For Examiner's Use **9** A student investigated the relative reactivity of four metals **A**, **B**, **C** and **D**, by comparing the rate at which these metals reacted in dilute acid. For Examiner's Use [2] The pieces of metal had the same surface area, and dilute hydrochloric acid was the only acid used in the experiment. Fig. 9.1 shows what the student observed during the experiment. Fig. 9.1 | (a) | (1) | metal and the acid used, that the student must keep the same if her assessment of relative reactivity is to be reliable. | |-----|------|---| | | | variable | | | | explanation | | | | | | | | [3] | | | (ii) | Predict and explain what is observed if a lighted splint is held over the test-tube in which metal ${\bf D}$ is reacting. | | | | | | | | | (b) The student took some larger pieces of the same metals, **A**, **B**, **C** and **D**, and used them to make the two electrochemical cells shown in Fig. 9.2. For Examiner's Use The student set up the cells so that the negative electrode in both cells was on the left hand side as shown in Fig. 9.2. Fig. 9.2 The student had an idea that the electrode made of the **more reactive** metal would always be the **negative** electrode in an electrochemical cell. | (i) | Use the information in Fig. 9.1 and Fig. 9.2 to explain how the experimental evidence supports the student's idea. | |------|--| | | | | | [2] | | (ii) | Use the information in Fig. 9.1 and Fig. 9.2 to suggest which of the four metals, $\bf A$, $\bf B$, $\bf C$ or $\bf D$, is the least reactive. | | | metal | | | reason | | | | | | [2] | | c) | Draw a labelled diagram of the bonding in a typical metal. Your diagram does not need to show more than 12 atoms. | For
Examiner's
Use | |----|--|--------------------------| | | Use your diagram to help you to explain why metals are good conductors of electricity. | [2] | | **10** (a) Optical fibres are used to see inside the human body. Light is sent along some of the fibres to enable doctors to see what is there. For Examiner's Use (i) Fig. 10.1 shows an optical fibre with a ray of light travelling down part of it. Draw the path of the ray of light as it travels down the fibre. Fig. 10.1 [2] | (ii) | Suggest why optical fibres are now | / replacing meta | al wires as | the method I | by which | |------|------------------------------------|------------------|-------------|--------------|----------| | | telephone signals are sent. | | | | | | | | | | | | | [1] | |-----| **(b)** Table 10.1 shows the likely effects of an electric current passing through the body. For Examiner's Use ### **Table 10.1** | current / amperes | effect on the human body | |-------------------|--------------------------------------| | 0.001 | none | | 0.003 | tingling | | 0.010 | muscular spasm | | 0.100 | fatal if it passes through the heart | A person touched a live wire connected to a 250 V supply. The path to earth through the body had a high resistance of $20\,000\,\Omega$. Calculate the current that passes through the person. What effect will this have on the person's body? State the formula that you use and show your working. formula used working current = _____ effect on the body [3] # **BLANK PAGE** DATA SHEET The Periodic Table of the Elements | | 0 | 4 He Helium | 20
Neon
10 Ary
Ary
Ary | 84
Krypton
36 | 131 Xe Xenon 54 | Radon
86 | | 175
Lu
Lutetium
71 | Lr
Lawrencium
103 | |-------|-----|--------------------------------|---|------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|---|---| | | IIA | | 19 Fluorine 9 35.5 C1 Chlorine | 80 Bromine 35 | 127 I lodine | At
Astatine
85 | | 173
Yb
Ytterbium
70 | Nobelium
102 | | | VI | | 16
Oxygen
8
32
S
Sulfur | 79 Selenium | 128 Te Tellurium 52 | Po
Polonium
84 | | 169 Tm Thulium 69 | Mendelevium | | | > | | 14 Nitrogen 7 31 Phosphorus 15 | 75
AS
Arsenic | 122
Sb
Antimony
51 | 209 Bi Bismuth 83 | | 167
Er
Erbium
68 | Fm
Fermium | | | > | | Carbon 6 Carbon 8 Si Siicon 14 | 73
Ge
Germanium
32 | Sn Tin 50 | 207
Pb
Lead | | 165
Ho
Holmium
67 | ES
n Einsteinium
99 | | | = | | 11 B Boron 5 A1 Aluminium 13 | 70 Ga Gallium 31 | 115 In Indium | 204 T 1 T Thallium | | 162
Dy
Dysprosium
66 | Californium | | | | | | 65
Zn
Zinc
30 | Cadmium Cad Cadmium 48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | BK Berkelium 97 | | | | | | 64
Copper | 108 Ag Silver 47 | 197
Au
Gold | | 157
Gd
Gadolinium
64 | Cm
Ourium | | Group | | | | 59
Nickel | 106 Pd Palladium | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am
Americium
95 | | Gre | | | | 59
Co
Cobalt
27 | 103
Rh
Rhodium
45 | 192 Ir
Irdium | | Samarium 62 | Pu Plutonium | | | | 1
H
Hydrogen
1 | | 56
Fe
Iron | Ruthenium | 190
Os
Osmium
76 | | Pm Promethium 61 | Neptunium | | | | | | 55
Mn
Manganese
25 | Tc
Technetium
43 | 186 Re Rhenium 75 | | 144 Ne 0dymium 60 | 238
U
Uranium
92 | | | | | | Chromium 24 | 96
Mo
Molybdenum
42 | 184 W Tungsten 74 | | 141
Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | 51
Vanadium
23 | 93
Nb
Niobium | 181 Ta Tantalum 73 | | 140 Ce Cerium | 232
Th
Thorium | | | | | 48 T ttanium 22 | 91
Zr
Zirconium
40 | 178 #f
Hafnium
72 | | | nic mass
bol
nic) number | | | | | | | Scandium 21 | 89 < Y Yttrium 39 | 139 La Lanthanum 57 * | 227 AC Actinium 89 | l series
eries | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | = | | Beryllium 4 24 Magnesium 12 | 40 Ca Cakcium | Strontium | 137
Ba
Barium
56 | 226
Rad
Radium
88 | *58-71 Lanthanoid series
190-103 Actinoid series | œ × ₩ | | | _ | | 7 Lithium 3 23 Na Sodium 11 | 39 K | Rb
Rubidium
37 | 133
Cs
Caesium
55 | Fr
Francium
87 | *58-71 L | Key | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.