

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education	m
CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
CO-ORDINAT	ED SCIENCES 0654/33	

Paper 3 (Extended)

October/November 2011 2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 27 printed pages and 1 blank page.

For Examiner's Use

1 (a) Fig. 1.1 shows a flowering plant, and two cells from the plant.

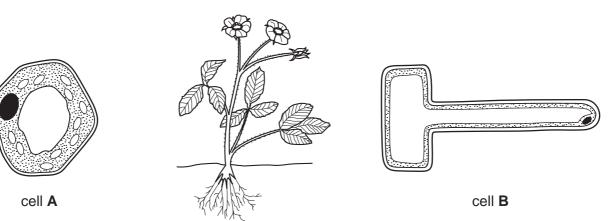


Fig. 1.1

- (i) On Fig. 1.1, draw a line from each cell to a part of the plant in which it could be found. [2]
- (ii) State one difference between the **contents** of cell **A** and cell **B**, and explain the reasons for this difference.

difference	
explanation	
[[3]

(b) A grower has a rare variety of orchid with unusual flowers. She decides to produce new plants from this orchid using tissue culture.

Explain why it is better for the grower to use tissue culture to produce new plants, rather than sowing seeds she has collected from the orchid plant.

[3]

- (c) Genetic engineering has been used to produce a new variety of maize (corn) plants. This was done by introducing a gene into the maize cells that causes the plant to produce a toxin. The toxin only kills insects that eat parts of the plant.
 - (i) Suggest **one** possible advantage to a farmer of growing this type of maize.

[1]
 (ii) Suggest one possible problem that could be caused by growing this type of maize.
 [1]

For

Examiner's Use

- 2 Melamine resin and PTFE are important plastics which have many uses in the home and industry. Wool consists of fibres which are made of protein molecules.
 - (a) All of the above substances are made of polymer molecules.

Explain the general meaning of the term *polymer*.

[2]

(b) Fig. 2.1 shows the displayed formula of the monomer that reacts to produce PTFE.

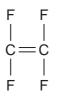


Fig. 2.1

(i) Fig. 2.2 shows the outer shell electrons in a carbon atom and a fluorine atom.

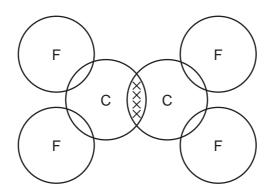



Fig. 2.2

Complete the bonding diagram below to show how the outer electrons are arranged in the molecule whose displayed formula is shown in Fig. 2.1.

[2]

For

Examiner's Use

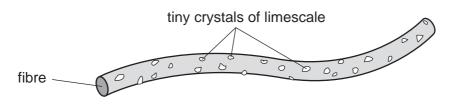
- (ii) Explain why the molecule shown in Fig. 2.1 is **not** an example of a hydrocarbon. Examiner's
- (iii) Draw the displayed formula of a small section of a PTFE molecule.

The section that you draw must show eight fluorine atoms.

[3]

For

Use


(c) Melamine resin and PTFE behave differently when they are heated. PTFE becomes softer and may melt, but melamine resin does not melt even when it is heated strongly.

Explain this difference in terms of forces between molecules. You may draw some simple diagrams if it helps you to answer this question.

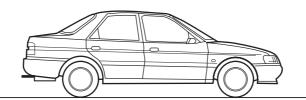
..... [3]

(d) Fig. 2.3 shows a magnified section of a wool fibre. The fibre has been washed using hot, temporarily hard water. The fibre is covered with tiny crystals of limescale.

For Examiner's Use

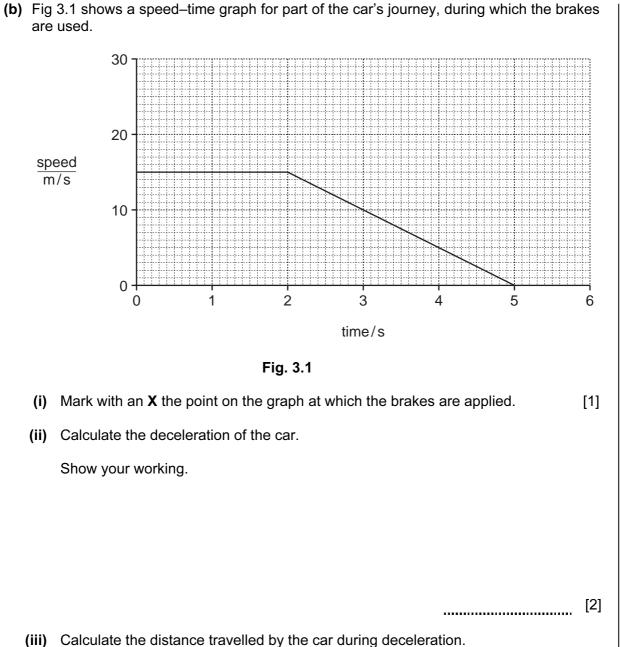
(i) Complete the symbolic equation which represents the chemical reaction which causes limescale to form.

 $Ca(HCO_3)_2 \longrightarrow$


[1]

(ii) Ion exchange resins are polymers with positive ions attached to the polymer chains.

Describe and explain briefly how the process of ion exchange can be used to soften hard water.


[3]

3 A car is being driven on a journey.

(a) (i) State the **two** quantities needed to find the momentum of the car.

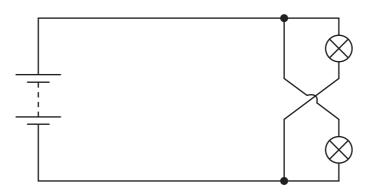
	and	[1]
(ii)	The car turns a corner without changing speed.	
	Explain why the momentum of the car has changed.	
		[2]

III) Calculate the distance travelled by the car during dece

Show your working.

[2]

For


Examiner's Use

8

(c) Fig 3.2 shows the circuit diagram of the parallel circuit used to supply electrical energy to two identical headlamps in the car.

9

For Examiner's Use

The current through the filament of one headlamp is 2.4 A. The potential difference across each of the headlamps is 12 V.

(i) Calculate the resistance of the headlamp filament whilst in use.

State the formula that you use and show your working.

formula used

working

(ii) Calculate the total resistance of the two headlamps in parallel.
State the formula that you use and show your working.
formula used
working
[3]

4 (a) (i) Caffeine is a compound contained in coffee. Many people who consume caffeine during the day find that they have difficulty in getting to sleep at night.

Explain why it is correct to refer to caffeine as a drug.

(ii) Some drugs are analgesics.
 Why might a person need to take an analgesic?
 [1]

(b) Some coffee drinks are sold in self-heating cans.

Fig. 4.1 shows a cross-sectional diagram of one design of self-heating can.

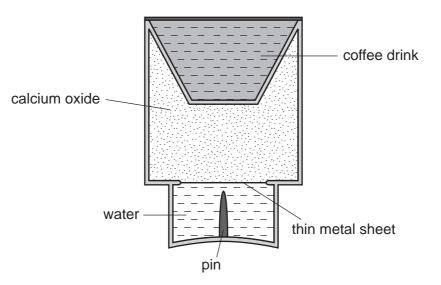


Fig. 4.1

10

For

Examiner's Use Fig. 4.2 shows the can after it has been turned upside down and the pin pushed through the thin metal sheet. This allows the water to fall into the calcium oxide.

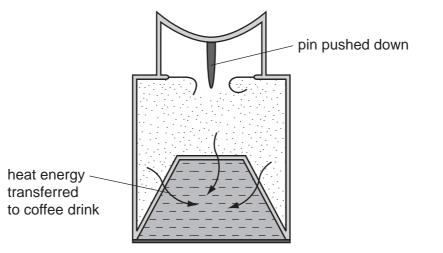
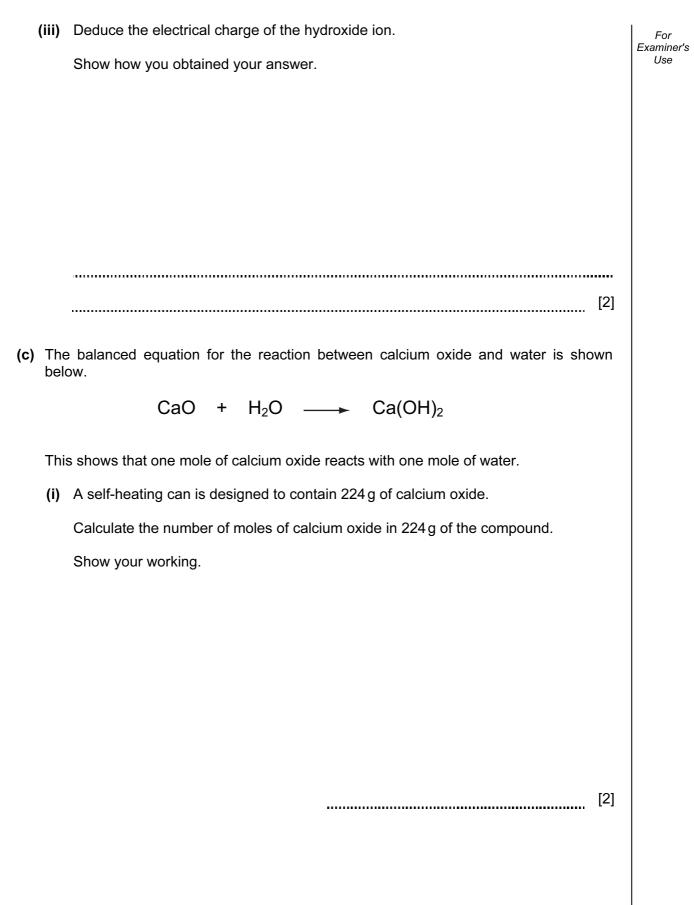


Fig. 4.2

The reaction between calcium oxide and water is highly exothermic and produces the ionic compound calcium hydroxide, $Ca(OH)_2$.

(i) In an internet video to explain how the can works, it is stated that the water mixes with 'limestone'.


State why this information is incorrect.

(ii) Use the position of calcium in the Periodic Table to explain why the electrical charge of a calcium ion is +2.

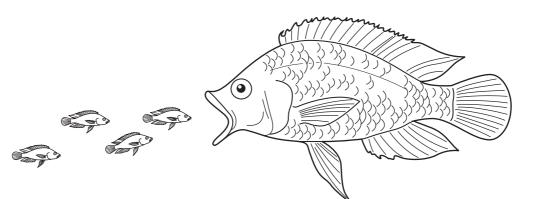
[Turn over

For

Examiner's Use

(ii) Calculate the mass of water which is needed to react with 224g of calcium oxide.Show your working.

For Examiner's Use


[2]

.....

- Fig. 5.1 (a) State two features, visible on Fig. 5.1, which are characteristic of fish. 1 2 [1] (b) Most fish have external fertilisation. (i) Explain what is meant by *external fertilisation*. [2] (ii) Explain why animals that live entirely on land cannot use external fertilisation.[1]
- **5** Cichlid fish live in lakes in east Africa. Fig. 5.1 shows a cichlid fish.

(c) Wild cichlid fish are unusual because they care for their eggs and young. The mother keeps the fertilised eggs in her mouth until they hatch. After the young fish have hatched, she takes them back into her mouth when danger threatens. This behaviour is caused by the fish's genes, and is inherited.

For Examiner's Use

Suggest how natural selection in an east African lake could have led to the evolution of this behaviour.

•••••
•••••
[3]

(d) Cichlid fish that have been bred in captivity can be bought as pets. Breeders take the young away from the captive mothers after they have hatched because these mothers often eat their young.

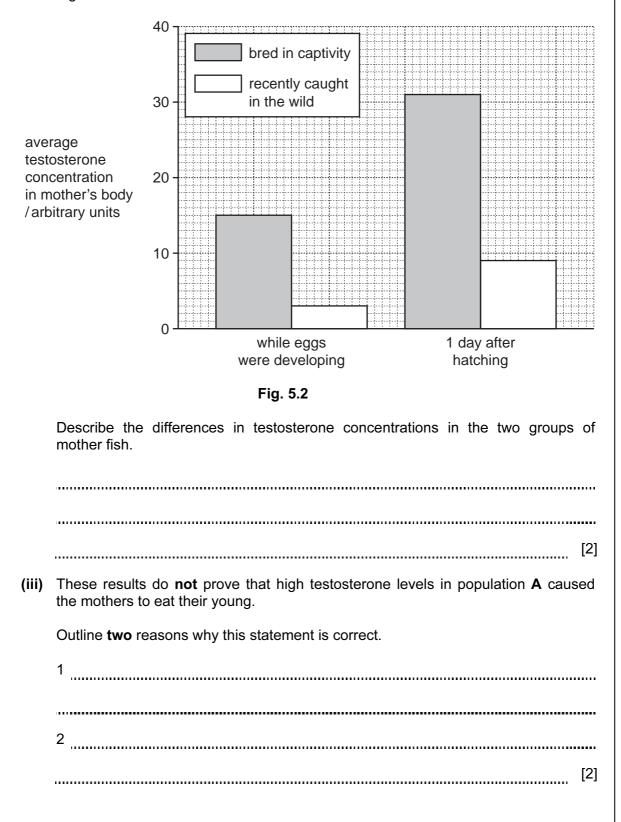
Research was carried out into the behaviour of mothers in two groups of cichlid fish.

- Group **A** had been bred from a population of fish that had been kept in captivity for more than 30 years.
- Group **B** had recently been caught in the wild.

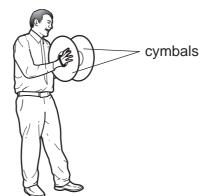
The researchers used 4 female fish from each group. They allowed each fish to breed as normal with male fish from the same group. They left the young fish with their mothers. All the fish were kept in the same conditions.

Table 5.1 shows the results.

Table 5.1


	group A	group B
number of mothers	4	4
number of mothers that ate their young by 1 day after hatching	3	0

(i) Explain how these results suggest that the difference in behaviour between the group **A** and group **B** fish was caused by their genes, and not by their environment.


•••••
 [2]

(ii) The researchers also measured the testosterone levels in the mother fish in both groups.

- 6 An orchestra is playing in a theatre.
 - (a) A musician is playing the cymbals.

(i) Describe how the sound travels through the air from the cymbals to the ear of a man in the audience.

[2]

(ii) The man in the audience thought that the sound from the cymbals was loud because of its high frequency. He was wrong.

Explain why the man was wrong.

[2]

- (b) The theatre has an internal volume of 50 000 m³. The air inside it has a density of 1.3 kg/m^3 .
 - (i) Show that the mass of the air in the theatre is 65 000 kg.

State the formula that you use and show your working.

formula used

working

For Examiner's Use

.....

	(ii)	i) The air is heated by 10 °C. The specific heat capacity of air is 1000 J/kg °C.			
		Calculate the energy needed to heat up the air in the theatre.			
	State the formula that you use and show your working.				
		formula used			
		working			
		[3]		
(c)	Col (30	oured light is shone onto the stage. Red light has a wave speed of 3 x 10^8 m / s 000000 m/s) and a wavelength of 7.5 x 10^{-7} m (0.00000075 m).	3		
	(i)	Explain what is meant by the term wavelength.			
		[1]		
	(ii)	Calculate the frequency of red light.			
		State the formula that you use and show your working.			
		formula used			
		working			
		[3]		

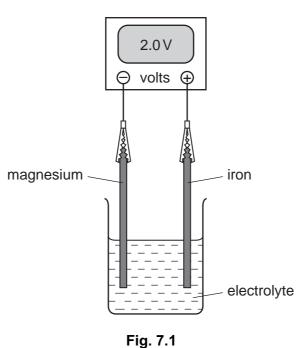
7 (a) Table 7.1 shows the electron arrangements of atoms of five elements, **P** to **T**.

atom	1 st shell	2 nd shell	3 rd shell	4 th shell
Р	2	1		
Q	2	8	1	
R	2	8	2	
S	2	8	8	1
т	2	8	8	2

Table 7.1

(i) Explain how the electron arrangements show that all of the elements, **P** to **T**, are metals.

[1]


(ii) An atom of element **P** has a nucleon (mass) number of 7.

State the number of neutrons in this atom.

......[1]

(b) Fig. 7.1 shows an electrochemical cell which was made by a student in a school laboratory.

For Examiner's Use

(i) The student was asked to choose one of the liquids shown below as the electrolyte in her cell.

(ii) The student used her cell to investigate the relative reactivity of four metals, magnesium, iron and two unknown metals, **X** and **Y**.

For Examiner's Use

The student had learned that the more reactive metal always becomes the negative electrode.

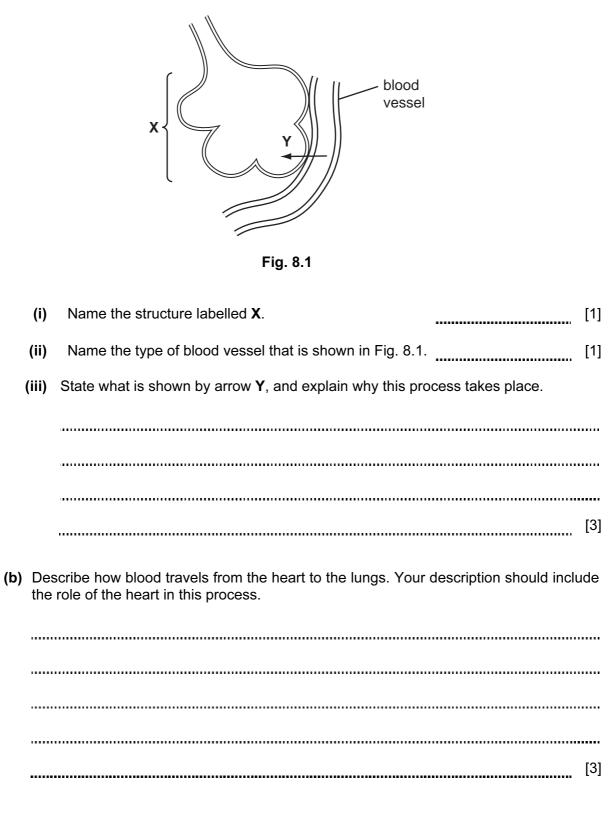
The results of experiments involving all four metals are shown in Table 7.2.

experiment	negative electrode	positive electrode	cell voltage / volts
1	magnesium	iron	2.0
2	magnesium	x	2.7
3	magnesium	Y	1.6

Table 7.2

Use the results in Table 7.2 to place the four metals in order of reactivity.

most reactive	
least reactive	


[2]

BLANK PAGE

23

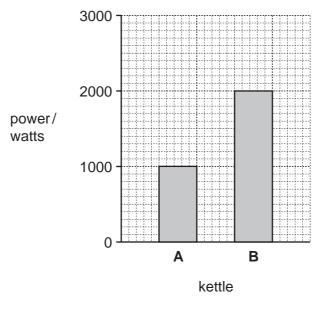
Please turn over for Question 8.

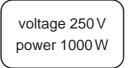
8 (a) Fig. 8.1 shows a section through a part of a person's lungs where gas exchange takes place.

(c) Describe and explain how the actions of the intercostal muscles and diaphragm muscles cause inhalation (breathing in) to take place.

 [3]

9 (a) The bar chart in Fig 9.1 shows the electrical power rating of two kettles.




Fig. 9.1

Kettle A takes 10 minutes to boil some water.

Predict how long kettle **B** will take to boil the same mass of water.

[1]

(b) Kettle A has a label underneath it. Fig. 9.2 shows some of the information on this label.

(i) Calculate the maximum current through the kettle.

State the formula that you use and show your working.

formula used

working

.....[2]

	(ii) This current passes through the kettle for 2 minutes.	For Examiner's
	Calculate the charge which passes through the kettle in this time.	Use
	State the formula that you use and show your working.	
	formula used	
	working	
	[2]	
(c)	Use the idea of convection to explain why a kettle has the heating element at the bottom.	
	[2]	

	0	⁴ He	Helium 2	20	Ne	Neon 10	40	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86			175	Lutetium	71	-		103
	∧			19	ш	Fluorine 9	35.5	Cl	Chlorine 17	80	Ŗ	Bromine 35	127	I	lodine 53		At	Astatine 85			173	Yb Ytterbium	70		Nobelium	102
	⋝			16	0	Oxygen 8	32	S	Sulfur 16	62	Se	Selenium 34	128	Те	Tellurium 52		Ро	Polonium 84			169	T Thulium	69		Mendelevium	101
	>			14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83			167	Erbium	68	Î	Fermium	100
	≥			12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82			165	Holmium	67	Ĺ	Einsteinium	66
	≡			1	8	Boron 5	27	٩ı	Aluminium 13	20	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81			162	Dy Dysprosium	66	č	Californium	98
										65	Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80			159	Tb Terbium	65		Berkelium	
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			157	Gd Gadolinium	64	Ċ	Curium	96
Group										59	ïZ	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78			152	Eu Europium	63		AIII	95
Gro										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			150	Sm Samarium	62	ċ	Plutonium	
		- I	Hydrogen 1							56	Бе	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76				Pa methium		1	Neptunium	93
				_						55	Mn	Manganese 25		Тc	Technetium 43	186	Re	Rhenium 75			144	Neodymium	60	238	Uranium	92
										52	ັບ	Chromium 24	96	Mo	Molybdenum 42	184	8	Tungsten 74			141	Praseodymium	59	ć	Protactinium	91
										51	>	Vanadium 23	93	ЧN	Niobium 41	181	Та	Tantalum 73			140	Cerium Cerium	58	232	Thorium	90
										48	F	Titanium 22	91	Zr	Zirconium 40	178	Ηf	Hafnium 72						lic mass	101	ic) number
1										45	Sc	Scandium 21	68	≻	Yttrium 39	139	La	Lanthanum 57 *	227	Ac Actinium 89 †	*58_71 anthanoid cariae	eries	mete entitel	a = relative atomic mass	= divinity of the man	b = proton (atomic) number
							1					_			Ę				6	a f		ids	(, ,	< .	0
	=	-		6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	S	Strontium 38	137	Ba	Barium 56	22	Radium 88	c qtu c	190-103 Actinoid series		a >	<	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.